Enhance MVIZ in three ways:

1. Teach it new tricks: in particular how to propagate through signed shr and sexts.
2. Teach it to return a bitset of known-1 and known-0 bits, instead of just zero.
3. Teach instcombine (AND X, C) to fold when we know all C bits of X.

This implements Regression/Transforms/InstCombine/bittest.ll, and allows
future things to be simplified.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26087 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-02-09 07:38:58 +00:00
parent 12f7de8222
commit 68d5ff2b83

View File

@ -406,88 +406,182 @@ static ConstantInt *SubOne(ConstantInt *C) {
ConstantInt::get(C->getType(), 1))); ConstantInt::get(C->getType(), 1)));
} }
/// ComputeMaskedNonZeroBits - Determine which of the bits specified in Mask are /// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// not known to be zero and return them as a bitmask. The bits that we can /// known to be either zero or one and return them in the KnownZero/KnownOne
/// guarantee to be zero are returned as zero bits in the result. /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
static uint64_t ComputeMaskedNonZeroBits(Value *V, uint64_t Mask, /// processing.
unsigned Depth = 0) { static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero,
uint64_t &KnownOne, unsigned Depth = 0) {
// Note, we cannot consider 'undef' to be "IsZero" here. The problem is that // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that
// we cannot optimize based on the assumption that it is zero without changing // we cannot optimize based on the assumption that it is zero without changing
// it to be an explicit zero. If we don't change it to zero, other code could // it to be an explicit zero. If we don't change it to zero, other code could
// optimized based on the contradictory assumption that it is non-zero. // optimized based on the contradictory assumption that it is non-zero.
// Because instcombine aggressively folds operations with undef args anyway, // Because instcombine aggressively folds operations with undef args anyway,
// this won't lose us code quality. // this won't lose us code quality.
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(V)) {
return CI->getRawValue() & Mask; // We know all of the bits for a constant!
KnownOne = CI->getZExtValue();
KnownZero = ~KnownOne & Mask;
return;
}
KnownZero = KnownOne = 0; // Don't know anything.
if (Depth == 6 || Mask == 0) if (Depth == 6 || Mask == 0)
return Mask; // Limit search depth. return; // Limit search depth.
uint64_t KnownZero2, KnownOne2;
if (Instruction *I = dyn_cast<Instruction>(V)) { if (Instruction *I = dyn_cast<Instruction>(V)) {
switch (I->getOpcode()) { switch (I->getOpcode()) {
case Instruction::And: case Instruction::And:
// (X & C1) & C2 == 0 iff C1 & C2 == 0. // If either the LHS or the RHS are Zero, the result is zero.
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(I->getOperand(1))) ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask &= ~KnownZero;
CI->getRawValue() & Mask, Depth+1); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
// If either the LHS or the RHS are MaskedValueIsZero, the result is zero. assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Mask = ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Mask = ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
return Mask; // Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case Instruction::Or: case Instruction::Or:
case Instruction::Xor: ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
// Any non-zero bits in the LHS or RHS are potentially non-zero in the ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
// result. assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1) | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case Instruction::Select: case Instruction::Select:
// Any non-zero bits in the T or F values are potentially non-zero in the ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
// result. ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
return ComputeMaskedNonZeroBits(I->getOperand(2), Mask, Depth+1) | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
ComputeMaskedNonZeroBits(I->getOperand(1), Mask, Depth+1); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::Cast: { case Instruction::Cast: {
const Type *SrcTy = I->getOperand(0)->getType(); const Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy == Type::BoolTy) if (!SrcTy->isIntegral()) return;
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask & 1, Depth+1);
if (!SrcTy->isInteger()) return Mask;
// (cast <ty> X to int) & C2 == 0 iff <ty> could not have contained C2. // If this is an integer truncate or noop, just look in the input.
if (SrcTy->isUnsigned() || // Only handle zero ext/trunc/noop if (SrcTy->getPrimitiveSizeInBits() >=
SrcTy->getPrimitiveSizeInBits() >= I->getType()->getPrimitiveSizeInBits()) {
I->getType()->getPrimitiveSizeInBits()) { ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
Mask &= SrcTy->getIntegralTypeMask(); return;
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1);
} }
// FIXME: handle sext casts. // Sign or Zero extension. Compute the bits in the result that are not
break; // present in the input.
uint64_t NotIn = ~SrcTy->getIntegralTypeMask();
uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn;
// Handle zero extension.
if (!SrcTy->isSigned()) {
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= NewBits;
} else {
// Sign extension.
Mask &= SrcTy->getIntegralTypeMask();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1);
if (KnownZero & InSignBit) { // Input sign bit known zero
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne & InSignBit) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
}
return;
} }
case Instruction::Shl: case Instruction::Shl:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
return ComputeMaskedNonZeroBits(I->getOperand(0),Mask >> SA->getValue(), Mask >> SA->getValue();
Depth+1) << SA->getValue(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= SA->getValue();
KnownOne <<= SA->getValue();
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
return;
}
break; break;
case Instruction::Shr: case Instruction::Shr:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1))) {
if (I->getType()->isUnsigned()) { // Compute the new bits that are at the top now.
Mask <<= SA->getValue(); uint64_t HighBits = (1ULL << SA->getValue())-1;
Mask &= I->getType()->getIntegralTypeMask(); HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue();
return ComputeMaskedNonZeroBits(I->getOperand(0), Mask, Depth+1)
>> SA->getValue(); if (I->getType()->isUnsigned()) { // Unsigned shift right.
Mask << SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
KnownZero |= HighBits; // high bits known zero.
} else {
Mask << SA->getValue();
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
KnownZero >>= SA->getValue();
KnownOne >>= SA->getValue();
// Handle the sign bits.
uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1);
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
if (KnownZero & SignBit) { // New bits are known zero.
KnownZero |= HighBits;
} else if (KnownOne & SignBit) { // New bits are known one.
KnownOne |= HighBits;
}
} }
return;
}
break; break;
} }
} }
return Mask;
} }
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero /// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have. /// for bits that V cannot have.
static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) { static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) {
return ComputeMaskedNonZeroBits(V, Mask, Depth) == 0; uint64_t KnownZero, KnownOne;
ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
} }
/// SimplifyDemandedBits - Look at V. At this point, we know that only the Mask /// SimplifyDemandedBits - Look at V. At this point, we know that only the Mask
@ -879,8 +973,9 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
} }
if (Found) { if (Found) {
// This is a sign extend if the top bits are known zero. // This is a sign extend if the top bits are known zero.
uint64_t Mask = XorLHS->getType()->getIntegralTypeMask(); uint64_t Mask = ~0ULL;
Mask <<= 64-(TySizeBits-Size); Mask <<= 64-(TySizeBits-Size);
Mask &= XorLHS->getType()->getIntegralTypeMask();
if (!MaskedValueIsZero(XorLHS, Mask)) if (!MaskedValueIsZero(XorLHS, Mask))
Size = 0; // Not a sign ext, but can't be any others either. Size = 0; // Not a sign ext, but can't be any others either.
goto FoundSExt; goto FoundSExt;
@ -1949,22 +2044,29 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// Figure out which of the input bits are not known to be zero, and which // Figure out which of the input bits are not known to be zero, and which
// bits are known to be zero. // bits are known to be zero.
uint64_t NonZeroBits = ComputeMaskedNonZeroBits(Op0, TypeMask); uint64_t KnownZeroBits, KnownOneBits;
uint64_t ZeroBits = NonZeroBits^TypeMask; ComputeMaskedBits(Op0, TypeMask, KnownZeroBits, KnownOneBits);
// If the mask is not masking out any bits (i.e. all of the zeros in the // If the mask is not masking out any bits (i.e. all of the zeros in the
// mask are already known to be zero), there is no reason to do the and in // mask are already known to be zero), there is no reason to do the and in
// the first place. // the first place.
uint64_t NotAndRHS = AndRHSMask^TypeMask; uint64_t NotAndRHS = AndRHSMask^TypeMask;
if ((NotAndRHS & ZeroBits) == NotAndRHS) if ((NotAndRHS & KnownZeroBits) == NotAndRHS)
return ReplaceInstUsesWith(I, Op0); return ReplaceInstUsesWith(I, Op0);
// If the AND'd bits are all known, turn this AND into a constant.
if ((AndRHSMask & (KnownOneBits|KnownZeroBits)) == AndRHSMask) {
Constant *NewRHS = ConstantUInt::get(Type::ULongTy,
AndRHSMask & KnownOneBits);
return ReplaceInstUsesWith(I, ConstantExpr::getCast(NewRHS, I.getType()));
}
// If the AND mask contains bits that are known zero, remove them. A // If the AND mask contains bits that are known zero, remove them. A
// special case is when there are no bits in common, in which case we // special case is when there are no bits in common, in which case we
// implicitly turn this into an AND X, 0, which is later simplified into 0. // implicitly turn this into an AND X, 0, which is later simplified into 0.
if ((AndRHSMask & NonZeroBits) != AndRHSMask) { if ((AndRHSMask & ~KnownZeroBits) != AndRHSMask) {
Constant *NewRHS = Constant *NewRHS =
ConstantUInt::get(Type::ULongTy, AndRHSMask & NonZeroBits); ConstantUInt::get(Type::ULongTy, AndRHSMask & ~KnownZeroBits);
I.setOperand(1, ConstantExpr::getCast(NewRHS, I.getType())); I.setOperand(1, ConstantExpr::getCast(NewRHS, I.getType()));
return &I; return &I;
} }