Disable indvar widening if arithmetics on the wider type are more expensive

Summary:
IndVarSimplify should not widen an indvar if arithmetics on the wider
indvar are more expensive than those on the narrower indvar. For
instance, although NVPTX64 treats i64 as a legal type, an ADD on i64 is
twice as expensive as that on i32, because the hardware needs to
simulate a 64-bit integer using two 32-bit integers.

Split from D6188, and based on D6195 which adds NVPTXTargetTransformInfo.

Fixes PR21148.

Test Plan:
Added @indvar_32_bit that verifies we do not widen an indvar if the arithmetics
on the wider type are more expensive.

Reviewers: jholewinski, eliben, meheff, atrick

Reviewed By: atrick

Subscribers: jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D6196

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221772 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Jingyue Wu 2014-11-12 06:58:45 +00:00
parent a43247ca4e
commit 69adc159ee
3 changed files with 106 additions and 12 deletions

View File

@ -36,12 +36,14 @@ void initializeNVPTXTTIPass(PassRegistry &);
namespace {
class NVPTXTTI final : public ImmutablePass, public TargetTransformInfo {
const NVPTXTargetLowering *TLI;
public:
NVPTXTTI() : ImmutablePass(ID) {
NVPTXTTI() : ImmutablePass(ID), TLI(nullptr) {
llvm_unreachable("This pass cannot be directly constructed");
}
NVPTXTTI(const NVPTXTargetMachine *TM) : ImmutablePass(ID) {
NVPTXTTI(const NVPTXTargetMachine *TM)
: ImmutablePass(ID), TLI(TM->getSubtargetImpl()->getTargetLowering()) {
initializeNVPTXTTIPass(*PassRegistry::getPassRegistry());
}
@ -63,6 +65,12 @@ public:
bool hasBranchDivergence() const override;
unsigned getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
OperandValueKind Opd2Info = OK_AnyValue,
OperandValueProperties Opd1PropInfo = OP_None,
OperandValueProperties Opd2PropInfo = OP_None) const override;
/// @}
};
@ -78,3 +86,32 @@ llvm::createNVPTXTargetTransformInfoPass(const NVPTXTargetMachine *TM) {
}
bool NVPTXTTI::hasBranchDivergence() const { return true; }
unsigned NVPTXTTI::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
OperandValueProperties Opd2PropInfo) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return TargetTransformInfo::getArithmeticInstrCost(
Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// The machine code (SASS) simulates an i64 with two i32. Therefore, we
// estimate that arithmetic operations on i64 are twice as expensive as
// those on types that can fit into one machine register.
if (LT.second.SimpleTy == MVT::i64)
return 2 * LT.first;
// Delegate other cases to the basic TTI.
return TargetTransformInfo::getArithmeticInstrCost(
Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
}
}

View File

@ -31,6 +31,7 @@
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
@ -69,11 +70,12 @@ static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
namespace {
class IndVarSimplify : public LoopPass {
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
const DataLayout *DL;
TargetLibraryInfo *TLI;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
const DataLayout *DL;
TargetLibraryInfo *TLI;
const TargetTransformInfo *TTI;
SmallVector<WeakVH, 16> DeadInsts;
bool Changed;
@ -661,7 +663,7 @@ namespace {
/// extended by this sign or zero extend operation. This is used to determine
/// the final width of the IV before actually widening it.
static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
const DataLayout *DL) {
const DataLayout *DL, const TargetTransformInfo *TTI) {
bool IsSigned = Cast->getOpcode() == Instruction::SExt;
if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
return;
@ -671,6 +673,19 @@ static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
if (DL && !DL->isLegalInteger(Width))
return;
// Cast is either an sext or zext up to this point.
// We should not widen an indvar if arithmetics on the wider indvar are more
// expensive than those on the narrower indvar. We check only the cost of ADD
// because at least an ADD is required to increment the induction variable. We
// could compute more comprehensively the cost of all instructions on the
// induction variable when necessary.
if (TTI &&
TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
TTI->getArithmeticInstrCost(Instruction::Add,
Cast->getOperand(0)->getType())) {
return;
}
if (!WI.WidestNativeType) {
WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
WI.IsSigned = IsSigned;
@ -1187,14 +1202,16 @@ namespace {
class IndVarSimplifyVisitor : public IVVisitor {
ScalarEvolution *SE;
const DataLayout *DL;
const TargetTransformInfo *TTI;
PHINode *IVPhi;
public:
WideIVInfo WI;
IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
const DataLayout *DL, const DominatorTree *DTree):
SE(SCEV), DL(DL), IVPhi(IV) {
const DataLayout *DL, const TargetTransformInfo *TTI,
const DominatorTree *DTree)
: SE(SCEV), DL(DL), TTI(TTI), IVPhi(IV) {
DT = DTree;
WI.NarrowIV = IVPhi;
if (ReduceLiveIVs)
@ -1202,7 +1219,9 @@ namespace {
}
// Implement the interface used by simplifyUsersOfIV.
void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); }
void visitCast(CastInst *Cast) override {
visitIVCast(Cast, WI, SE, DL, TTI);
}
};
}
@ -1236,7 +1255,7 @@ void IndVarSimplify::SimplifyAndExtend(Loop *L,
PHINode *CurrIV = LoopPhis.pop_back_val();
// Information about sign/zero extensions of CurrIV.
IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT);
IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, TTI, DT);
Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
@ -1895,6 +1914,7 @@ bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
DL = DLP ? &DLP->getDataLayout() : nullptr;
TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
TTI = getAnalysisIfAvailable<TargetTransformInfo>();
DeadInsts.clear();
Changed = false;

View File

@ -0,0 +1,37 @@
; RUN: opt < %s -indvars -S | FileCheck %s
target triple = "nvptx64-unknown-unknown"
; For the nvptx64 architecture, the cost of an arithmetic instruction on a
; 64-bit integer is twice as expensive as that on a 32-bit integer, because the
; hardware needs to simulate a 64-bit integer using two 32-bit integers.
; Therefore, in this particular architecture, we should not widen induction
; variables to 64-bit integers even though i64 is a legal type in the 64-bit
; PTX ISA.
define void @indvar_32_bit(i32 %n, i32* nocapture %output) {
; CHECK-LABEL: @indvar_32_bit
entry:
%cmp5 = icmp sgt i32 %n, 0
br i1 %cmp5, label %for.body.preheader, label %for.end
for.body.preheader: ; preds = %entry
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%i.06 = phi i32 [ 0, %for.body.preheader ], [ %add, %for.body ]
; CHECK: phi i32
%mul = mul nsw i32 %i.06, %i.06
%0 = sext i32 %i.06 to i64
%arrayidx = getelementptr inbounds i32* %output, i64 %0
store i32 %mul, i32* %arrayidx, align 4
%add = add nsw i32 %i.06, 3
%cmp = icmp slt i32 %add, %n
br i1 %cmp, label %for.body, label %for.end.loopexit
for.end.loopexit: ; preds = %for.body
br label %for.end
for.end: ; preds = %for.end.loopexit, %entry
ret void
}