cleanup ConstantInt to use a single DenseMap for uniquing instead of the

heavy-weight ValueMap class.  This reduces mem usage bc reading kc++ by 29K,
even though it only creates 2955 constant ints!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34445 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-02-20 06:39:57 +00:00
parent d283566319
commit 6b6f6ba66c
2 changed files with 64 additions and 54 deletions

View File

@ -41,12 +41,9 @@ struct ConvertConstantType;
/// @brief Class for constant integers.
class ConstantInt : public Constant {
static ConstantInt *TheTrueVal, *TheFalseVal;
protected:
uint64_t Val;
protected:
ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT
ConstantInt(const IntegerType *Ty, uint64_t V);
friend struct ConstantCreator<ConstantInt, IntegerType, uint64_t>;
uint64_t Val;
public:
/// Return the constant as a 64-bit unsigned integer value after it
/// has been zero extended as appropriate for the type of this constant.

View File

@ -22,6 +22,7 @@
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <map>
@ -134,16 +135,74 @@ ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
// ConstantInt
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Normal Constructors
ConstantInt::ConstantInt(const IntegerType *Ty, uint64_t V)
: Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
}
ConstantInt *ConstantInt::TheTrueVal = 0;
ConstantInt *ConstantInt::TheFalseVal = 0;
namespace llvm {
void CleanupTrueFalse(void *) {
ConstantInt::ResetTrueFalse();
}
}
static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
assert(TheTrueVal == 0 && TheFalseVal == 0);
TheTrueVal = get(Type::Int1Ty, 1);
TheFalseVal = get(Type::Int1Ty, 0);
// Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
TrueFalseCleanup.Register();
return WhichOne ? TheTrueVal : TheFalseVal;
}
//---- ConstantInt::get() implementations...
//
// Provide DenseMapKeyInfo for all pointers.
namespace {
struct DenseMapIntegerKeyInfo {
typedef std::pair<uint64_t, const IntegerType*> KeyTy;
static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
}
static bool isPod() { return true; }
};
}
typedef DenseMap<DenseMapIntegerKeyInfo::KeyTy, ConstantInt*,
DenseMapIntegerKeyInfo> IntMapTy;
static ManagedStatic<IntMapTy> IntConstants;
// Get a ConstantInt from an int64_t. Note here that we canoncialize the value
// to a uint64_t value that has been zero extended down to the size of the
// integer type of the ConstantInt. This allows the getZExtValue method to
// just return the stored value while getSExtValue has to convert back to sign
// extended. getZExtValue is more common in LLVM than getSExtValue().
ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) {
const IntegerType *ITy = cast<IntegerType>(Ty);
V &= ITy->getBitMask();
ConstantInt *&Slot = (*IntConstants)[std::make_pair(uint64_t(V), ITy)];
if (Slot) return Slot;
return Slot = new ConstantInt(ITy, V);
}
//===----------------------------------------------------------------------===//
// ConstantXXX Classes
//===----------------------------------------------------------------------===//
ConstantFP::ConstantFP(const Type *Ty, double V)
: Constant(Ty, ConstantFPVal, 0, 0) {
assert(isValueValidForType(Ty, V) && "Value too large for type!");
@ -598,15 +657,6 @@ namespace llvm {
///
AbstractTypeMapTy AbstractTypeMap;
private:
void clear(std::vector<Constant *> &Constants) {
for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I)
Constants.push_back(I->second);
Map.clear();
AbstractTypeMap.clear();
InverseMap.clear();
}
public:
typename MapTy::iterator map_end() { return Map.end(); }
@ -796,43 +846,6 @@ public:
}
//---- ConstantInt::get() implementations...
//
static ManagedStatic<ValueMap<uint64_t, IntegerType, ConstantInt> >IntConstants;
// Get a ConstantInt from an int64_t. Note here that we canoncialize the value
// to a uint64_t value that has been zero extended down to the size of the
// integer type of the ConstantInt. This allows the getZExtValue method to
// just return the stored value while getSExtValue has to convert back to sign
// extended. getZExtValue is more common in LLVM than getSExtValue().
ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) {
const IntegerType *ITy = cast<IntegerType>(Ty);
return IntConstants->getOrCreate(ITy, V & ITy->getBitMask());
}
ConstantInt *ConstantInt::TheTrueVal = 0;
ConstantInt *ConstantInt::TheFalseVal = 0;
void CleanupTrueFalse(void *) {
ConstantInt::ResetTrueFalse();
}
static ManagedCleanup<CleanupTrueFalse> TrueFalseCleanup;
ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
assert(TheTrueVal == 0 && TheFalseVal == 0);
TheTrueVal = get(Type::Int1Ty, 1);
TheFalseVal = get(Type::Int1Ty, 0);
// Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
TrueFalseCleanup.Register();
return WhichOne ? TheTrueVal : TheFalseVal;
}
//---- ConstantFP::get() implementation...
//