diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt index 1c39cd22f25..c8d4dcf8398 100644 --- a/lib/CodeGen/CMakeLists.txt +++ b/lib/CodeGen/CMakeLists.txt @@ -97,7 +97,6 @@ add_llvm_library(LLVMCodeGen TwoAddressInstructionPass.cpp UnreachableBlockElim.cpp VirtRegMap.cpp - VirtRegRewriter.cpp ) add_llvm_library_dependencies(LLVMCodeGen diff --git a/lib/CodeGen/VirtRegRewriter.cpp b/lib/CodeGen/VirtRegRewriter.cpp deleted file mode 100644 index a5ec797b27d..00000000000 --- a/lib/CodeGen/VirtRegRewriter.cpp +++ /dev/null @@ -1,2633 +0,0 @@ -//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "virtregrewriter" -#include "VirtRegRewriter.h" -#include "VirtRegMap.h" -#include "llvm/Function.h" -#include "llvm/CodeGen/LiveIntervalAnalysis.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetInstrInfo.h" -#include "llvm/Target/TargetLowering.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/Statistic.h" -using namespace llvm; - -STATISTIC(NumDSE , "Number of dead stores elided"); -STATISTIC(NumDSS , "Number of dead spill slots removed"); -STATISTIC(NumCommutes, "Number of instructions commuted"); -STATISTIC(NumDRM , "Number of re-materializable defs elided"); -STATISTIC(NumStores , "Number of stores added"); -STATISTIC(NumPSpills , "Number of physical register spills"); -STATISTIC(NumOmitted , "Number of reloads omitted"); -STATISTIC(NumAvoided , "Number of reloads deemed unnecessary"); -STATISTIC(NumCopified, "Number of available reloads turned into copies"); -STATISTIC(NumReMats , "Number of re-materialization"); -STATISTIC(NumLoads , "Number of loads added"); -STATISTIC(NumReused , "Number of values reused"); -STATISTIC(NumDCE , "Number of copies elided"); -STATISTIC(NumSUnfold , "Number of stores unfolded"); -STATISTIC(NumModRefUnfold, "Number of modref unfolded"); - -namespace { - enum RewriterName { local, trivial }; -} - -static cl::opt -RewriterOpt("rewriter", - cl::desc("Rewriter to use (default=local)"), - cl::Prefix, - cl::values(clEnumVal(local, "local rewriter"), - clEnumVal(trivial, "trivial rewriter"), - clEnumValEnd), - cl::init(local)); - -static cl::opt -ScheduleSpills("schedule-spills", - cl::desc("Schedule spill code"), - cl::init(false)); - -VirtRegRewriter::~VirtRegRewriter() {} - -/// substitutePhysReg - Replace virtual register in MachineOperand with a -/// physical register. Do the right thing with the sub-register index. -/// Note that operands may be added, so the MO reference is no longer valid. -static void substitutePhysReg(MachineOperand &MO, unsigned Reg, - const TargetRegisterInfo &TRI) { - if (MO.getSubReg()) { - MO.substPhysReg(Reg, TRI); - - // Any kill flags apply to the full virtual register, so they also apply to - // the full physical register. - // We assume that partial defs have already been decorated with a super-reg - // operand by LiveIntervals. - MachineInstr &MI = *MO.getParent(); - if (MO.isUse() && !MO.isUndef() && - (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0)))) - MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true); - } else { - MO.setReg(Reg); - } -} - -namespace { - -/// This class is intended for use with the new spilling framework only. It -/// rewrites vreg def/uses to use the assigned preg, but does not insert any -/// spill code. -struct TrivialRewriter : public VirtRegRewriter { - - bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs) { - DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n"); - DEBUG(dbgs() << "********** Function: " - << MF.getFunction()->getName() << '\n'); - DEBUG(dbgs() << "**** Machine Instrs" - << "(NOTE! Does not include spills and reloads!) ****\n"); - DEBUG(MF.dump()); - - MachineRegisterInfo *mri = &MF.getRegInfo(); - const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo(); - - bool changed = false; - - for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end(); - liItr != liEnd; ++liItr) { - - const LiveInterval *li = liItr->second; - unsigned reg = li->reg; - - if (TargetRegisterInfo::isPhysicalRegister(reg)) { - if (!li->empty()) - mri->setPhysRegUsed(reg); - } - else { - if (!VRM.hasPhys(reg)) - continue; - unsigned pReg = VRM.getPhys(reg); - mri->setPhysRegUsed(pReg); - // Copy the register use-list before traversing it. - SmallVector, 32> reglist; - for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg), - E = mri->reg_end(); I != E; ++I) - reglist.push_back(std::make_pair(&*I, I.getOperandNo())); - for (unsigned N=0; N != reglist.size(); ++N) - substitutePhysReg(reglist[N].first->getOperand(reglist[N].second), - pReg, *tri); - changed |= !reglist.empty(); - } - } - - DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); - DEBUG(MF.dump()); - - return changed; - } - -}; - -} - -// ************************************************************************ // - -namespace { - -/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB -/// from top down, keep track of which spill slots or remat are available in -/// each register. -/// -/// Note that not all physregs are created equal here. In particular, some -/// physregs are reloads that we are allowed to clobber or ignore at any time. -/// Other physregs are values that the register allocated program is using -/// that we cannot CHANGE, but we can read if we like. We keep track of this -/// on a per-stack-slot / remat id basis as the low bit in the value of the -/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks -/// this bit and addAvailable sets it if. -class AvailableSpills { - const TargetRegisterInfo *TRI; - const TargetInstrInfo *TII; - - // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled - // or remat'ed virtual register values that are still available, due to - // being loaded or stored to, but not invalidated yet. - std::map SpillSlotsOrReMatsAvailable; - - // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable, - // indicating which stack slot values are currently held by a physreg. This - // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a - // physreg is modified. - std::multimap PhysRegsAvailable; - - void disallowClobberPhysRegOnly(unsigned PhysReg); - - void ClobberPhysRegOnly(unsigned PhysReg); -public: - AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii) - : TRI(tri), TII(tii) { - } - - /// clear - Reset the state. - void clear() { - SpillSlotsOrReMatsAvailable.clear(); - PhysRegsAvailable.clear(); - } - - const TargetRegisterInfo *getRegInfo() const { return TRI; } - - /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is - /// available in a physical register, return that PhysReg, otherwise - /// return 0. - unsigned getSpillSlotOrReMatPhysReg(int Slot) const { - std::map::const_iterator I = - SpillSlotsOrReMatsAvailable.find(Slot); - if (I != SpillSlotsOrReMatsAvailable.end()) { - return I->second >> 1; // Remove the CanClobber bit. - } - return 0; - } - - /// addAvailable - Mark that the specified stack slot / remat is available - /// in the specified physreg. If CanClobber is true, the physreg can be - /// modified at any time without changing the semantics of the program. - void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) { - // If this stack slot is thought to be available in some other physreg, - // remove its record. - ModifyStackSlotOrReMat(SlotOrReMat); - - PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat)); - SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | - (unsigned)CanClobber; - - if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "Remembering RM#" - << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat); - DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) - << (CanClobber ? " canclobber" : "") << "\n"); - } - - /// canClobberPhysRegForSS - Return true if the spiller is allowed to change - /// the value of the specified stackslot register if it desires. The - /// specified stack slot must be available in a physreg for this query to - /// make sense. - bool canClobberPhysRegForSS(int SlotOrReMat) const { - assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) && - "Value not available!"); - return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1; - } - - /// canClobberPhysReg - Return true if the spiller is allowed to clobber the - /// physical register where values for some stack slot(s) might be - /// available. - bool canClobberPhysReg(unsigned PhysReg) const { - std::multimap::const_iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - I++; - if (!canClobberPhysRegForSS(SlotOrReMat)) - return false; - } - return true; - } - - /// disallowClobberPhysReg - Unset the CanClobber bit of the specified - /// stackslot register. The register is still available but is no longer - /// allowed to be modifed. - void disallowClobberPhysReg(unsigned PhysReg); - - /// ClobberPhysReg - This is called when the specified physreg changes - /// value. We use this to invalidate any info about stuff that lives in - /// it and any of its aliases. - void ClobberPhysReg(unsigned PhysReg); - - /// ModifyStackSlotOrReMat - This method is called when the value in a stack - /// slot changes. This removes information about which register the - /// previous value for this slot lives in (as the previous value is dead - /// now). - void ModifyStackSlotOrReMat(int SlotOrReMat); - - /// ClobberSharingStackSlots - When a register mapped to a stack slot changes, - /// other stack slots sharing the same register are no longer valid. - void ClobberSharingStackSlots(int StackSlot); - - /// AddAvailableRegsToLiveIn - Availability information is being kept coming - /// into the specified MBB. Add available physical registers as potential - /// live-in's. If they are reused in the MBB, they will be added to the - /// live-in set to make register scavenger and post-allocation scheduler. - void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills, - std::vector &KillOps); -}; - -} - -// ************************************************************************ // - -// Given a location where a reload of a spilled register or a remat of -// a constant is to be inserted, attempt to find a safe location to -// insert the load at an earlier point in the basic-block, to hide -// latency of the load and to avoid address-generation interlock -// issues. -static MachineBasicBlock::iterator -ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc, - MachineBasicBlock::iterator const Begin, - unsigned PhysReg, - const TargetRegisterInfo *TRI, - bool DoReMat, - int SSorRMId, - const TargetInstrInfo *TII, - const MachineFunction &MF) -{ - if (!ScheduleSpills) - return InsertLoc; - - // Spill backscheduling is of primary interest to addresses, so - // don't do anything if the register isn't in the register class - // used for pointers. - - const TargetLowering *TL = MF.getTarget().getTargetLowering(); - - if (!TL->isTypeLegal(TL->getPointerTy())) - // Believe it or not, this is true on 16-bit targets like PIC16. - return InsertLoc; - - const TargetRegisterClass *ptrRegClass = - TL->getRegClassFor(TL->getPointerTy()); - if (!ptrRegClass->contains(PhysReg)) - return InsertLoc; - - // Scan upwards through the preceding instructions. If an instruction doesn't - // reference the stack slot or the register we're loading, we can - // backschedule the reload up past it. - MachineBasicBlock::iterator NewInsertLoc = InsertLoc; - while (NewInsertLoc != Begin) { - MachineBasicBlock::iterator Prev = prior(NewInsertLoc); - for (unsigned i = 0; i < Prev->getNumOperands(); ++i) { - MachineOperand &Op = Prev->getOperand(i); - if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId) - goto stop; - } - if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 || - Prev->findRegisterDefOperand(PhysReg)) - goto stop; - for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias) - if (Prev->findRegisterUseOperandIdx(*Alias) != -1 || - Prev->findRegisterDefOperand(*Alias)) - goto stop; - NewInsertLoc = Prev; - } -stop:; - - // If we made it to the beginning of the block, turn around and move back - // down just past any existing reloads. They're likely to be reloads/remats - // for instructions earlier than what our current reload/remat is for, so - // they should be scheduled earlier. - if (NewInsertLoc == Begin) { - int FrameIdx; - while (InsertLoc != NewInsertLoc && - (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) || - TII->isTriviallyReMaterializable(NewInsertLoc))) - ++NewInsertLoc; - } - - return NewInsertLoc; -} - -namespace { - -// ReusedOp - For each reused operand, we keep track of a bit of information, -// in case we need to rollback upon processing a new operand. See comments -// below. -struct ReusedOp { - // The MachineInstr operand that reused an available value. - unsigned Operand; - - // StackSlotOrReMat - The spill slot or remat id of the value being reused. - unsigned StackSlotOrReMat; - - // PhysRegReused - The physical register the value was available in. - unsigned PhysRegReused; - - // AssignedPhysReg - The physreg that was assigned for use by the reload. - unsigned AssignedPhysReg; - - // VirtReg - The virtual register itself. - unsigned VirtReg; - - ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr, - unsigned vreg) - : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr), - AssignedPhysReg(apr), VirtReg(vreg) {} -}; - -/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that -/// is reused instead of reloaded. -class ReuseInfo { - MachineInstr &MI; - std::vector Reuses; - BitVector PhysRegsClobbered; -public: - ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) { - PhysRegsClobbered.resize(tri->getNumRegs()); - } - - bool hasReuses() const { - return !Reuses.empty(); - } - - /// addReuse - If we choose to reuse a virtual register that is already - /// available instead of reloading it, remember that we did so. - void addReuse(unsigned OpNo, unsigned StackSlotOrReMat, - unsigned PhysRegReused, unsigned AssignedPhysReg, - unsigned VirtReg) { - // If the reload is to the assigned register anyway, no undo will be - // required. - if (PhysRegReused == AssignedPhysReg) return; - - // Otherwise, remember this. - Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, - AssignedPhysReg, VirtReg)); - } - - void markClobbered(unsigned PhysReg) { - PhysRegsClobbered.set(PhysReg); - } - - bool isClobbered(unsigned PhysReg) const { - return PhysRegsClobbered.test(PhysReg); - } - - /// GetRegForReload - We are about to emit a reload into PhysReg. If there - /// is some other operand that is using the specified register, either pick - /// a new register to use, or evict the previous reload and use this reg. - unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg, - MachineFunction &MF, MachineInstr *MI, - AvailableSpills &Spills, - std::vector &MaybeDeadStores, - SmallSet &Rejected, - BitVector &RegKills, - std::vector &KillOps, - VirtRegMap &VRM); - - /// GetRegForReload - Helper for the above GetRegForReload(). Add a - /// 'Rejected' set to remember which registers have been considered and - /// rejected for the reload. This avoids infinite looping in case like - /// this: - /// t1 := op t2, t3 - /// t2 <- assigned r0 for use by the reload but ended up reuse r1 - /// t3 <- assigned r1 for use by the reload but ended up reuse r0 - /// t1 <- desires r1 - /// sees r1 is taken by t2, tries t2's reload register r0 - /// sees r0 is taken by t3, tries t3's reload register r1 - /// sees r1 is taken by t2, tries t2's reload register r0 ... - unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI, - AvailableSpills &Spills, - std::vector &MaybeDeadStores, - BitVector &RegKills, - std::vector &KillOps, - VirtRegMap &VRM) { - SmallSet Rejected; - MachineFunction &MF = *MI->getParent()->getParent(); - const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg); - return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores, - Rejected, RegKills, KillOps, VRM); - } -}; - -} - -// ****************** // -// Utility Functions // -// ****************** // - -/// findSinglePredSuccessor - Return via reference a vector of machine basic -/// blocks each of which is a successor of the specified BB and has no other -/// predecessor. -static void findSinglePredSuccessor(MachineBasicBlock *MBB, - SmallVectorImpl &Succs){ - for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), - SE = MBB->succ_end(); SI != SE; ++SI) { - MachineBasicBlock *SuccMBB = *SI; - if (SuccMBB->pred_size() == 1) - Succs.push_back(SuccMBB); - } -} - -/// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed -/// but not re-defined and it's being reused. Remove the kill flag for the -/// register and unset the kill's marker and last kill operand. -static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI, - BitVector &RegKills, - std::vector &KillOps) { - DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n"); - - MachineOperand *KillOp = KillOps[Reg]; - KillOp->setIsKill(false); - // KillOps[Reg] might be a def of a super-register. - unsigned KReg = KillOp->getReg(); - if (!RegKills[KReg]) - return; - - assert(KillOps[KReg]->getParent() == KillOp->getParent() && - "invalid superreg kill flags"); - KillOps[KReg] = NULL; - RegKills.reset(KReg); - - // If it's a def of a super-register. Its other sub-regsters are no - // longer killed as well. - for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) { - DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n"); - - assert(KillOps[*SR]->getParent() == KillOp->getParent() && - "invalid subreg kill flags"); - KillOps[*SR] = NULL; - RegKills.reset(*SR); - } -} - -/// ResurrectKill - Invalidate kill info associated with a previous MI. An -/// optimization may have decided that it's safe to reuse a previously killed -/// register. If we fail to erase the invalid kill flags, then the register -/// scavenger may later clobber the register used by this MI. Note that this -/// must be done even if this MI is being deleted! Consider: -/// -/// USE $r1 (vreg1) -/// ... -/// $r1(vreg3) = COPY $r1 (vreg2) -/// -/// RegAlloc has smartly assigned all three vregs to the same physreg. Initially -/// vreg1's only use is a kill. The rewriter doesn't know it should be live -/// until it rewrites vreg2. At that points it sees that the copy is dead and -/// deletes it. However, deleting the copy implicitly forwards liveness of $r1 -/// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at -/// vreg1 before deleting the copy. -static void ResurrectKill(MachineInstr &MI, unsigned Reg, - const TargetRegisterInfo* TRI, BitVector &RegKills, - std::vector &KillOps) { - if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) { - ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); - return; - } - // No previous kill for this reg. Check for subreg kills as well. - // d4 = - // store d4, fi#0 - // ... - // = s8 - // ... - // = d4 - for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { - unsigned SReg = *SR; - if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) - ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps); - } -} - -/// InvalidateKills - MI is going to be deleted. If any of its operands are -/// marked kill, then invalidate the information. -static void InvalidateKills(MachineInstr &MI, - const TargetRegisterInfo* TRI, - BitVector &RegKills, - std::vector &KillOps, - SmallVector *KillRegs = NULL) { - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef()) - continue; - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) - continue; - if (KillRegs) - KillRegs->push_back(Reg); - assert(Reg < KillOps.size()); - if (KillOps[Reg] == &MO) { - // This operand was the kill, now no longer. - KillOps[Reg] = NULL; - RegKills.reset(Reg); - for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { - if (RegKills[*SR]) { - assert(KillOps[*SR] == &MO && "bad subreg kill flags"); - KillOps[*SR] = NULL; - RegKills.reset(*SR); - } - } - } - else { - // This operand may have reused a previously killed reg. Keep it live in - // case it continues to be used after erasing this instruction. - ResurrectKill(MI, Reg, TRI, RegKills, KillOps); - } - } -} - -/// InvalidateRegDef - If the def operand of the specified def MI is now dead -/// (since its spill instruction is removed), mark it isDead. Also checks if -/// the def MI has other definition operands that are not dead. Returns it by -/// reference. -static bool InvalidateRegDef(MachineBasicBlock::iterator I, - MachineInstr &NewDef, unsigned Reg, - bool &HasLiveDef, - const TargetRegisterInfo *TRI) { - // Due to remat, it's possible this reg isn't being reused. That is, - // the def of this reg (by prev MI) is now dead. - MachineInstr *DefMI = I; - MachineOperand *DefOp = NULL; - for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = DefMI->getOperand(i); - if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef()) - continue; - if (MO.getReg() == Reg) - DefOp = &MO; - else if (!MO.isDead()) - HasLiveDef = true; - } - if (!DefOp) - return false; - - bool FoundUse = false, Done = false; - MachineBasicBlock::iterator E = &NewDef; - ++I; ++E; - for (; !Done && I != E; ++I) { - MachineInstr *NMI = I; - for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) { - MachineOperand &MO = NMI->getOperand(j); - if (!MO.isReg() || MO.getReg() == 0 || - (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg()))) - continue; - if (MO.isUse()) - FoundUse = true; - Done = true; // Stop after scanning all the operands of this MI. - } - } - if (!FoundUse) { - // Def is dead! - DefOp->setIsDead(); - return true; - } - return false; -} - -/// UpdateKills - Track and update kill info. If a MI reads a register that is -/// marked kill, then it must be due to register reuse. Transfer the kill info -/// over. -static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI, - BitVector &RegKills, - std::vector &KillOps) { - // These do not affect kill info at all. - if (MI.isDebugValue()) - return; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.isUse() || MO.isUndef()) - continue; - unsigned Reg = MO.getReg(); - if (Reg == 0) - continue; - - // This operand may have reused a previously killed reg. Keep it live. - ResurrectKill(MI, Reg, TRI, RegKills, KillOps); - - if (MO.isKill()) { - RegKills.set(Reg); - KillOps[Reg] = &MO; - for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { - RegKills.set(*SR); - KillOps[*SR] = &MO; - } - } - } - - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.getReg() || !MO.isDef()) - continue; - unsigned Reg = MO.getReg(); - RegKills.reset(Reg); - KillOps[Reg] = NULL; - // It also defines (or partially define) aliases. - for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) { - RegKills.reset(*SR); - KillOps[*SR] = NULL; - } - for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) { - RegKills.reset(*SR); - KillOps[*SR] = NULL; - } - } -} - -/// ReMaterialize - Re-materialize definition for Reg targeting DestReg. -/// -static void ReMaterialize(MachineBasicBlock &MBB, - MachineBasicBlock::iterator &MII, - unsigned DestReg, unsigned Reg, - const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM) { - MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg); -#ifndef NDEBUG - const MCInstrDesc &MCID = ReMatDefMI->getDesc(); - assert(MCID.getNumDefs() == 1 && - "Don't know how to remat instructions that define > 1 values!"); -#endif - TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI); - MachineInstr *NewMI = prior(MII); - for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = NewMI->getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) - continue; - assert(MO.isUse()); - unsigned Phys = VRM.getPhys(VirtReg); - assert(Phys && "Virtual register is not assigned a register?"); - substitutePhysReg(MO, Phys, *TRI); - } - ++NumReMats; -} - -/// findSuperReg - Find the SubReg's super-register of given register class -/// where its SubIdx sub-register is SubReg. -static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg, - unsigned SubIdx, const TargetRegisterInfo *TRI) { - for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); - I != E; ++I) { - unsigned Reg = *I; - if (TRI->getSubReg(Reg, SubIdx) == SubReg) - return Reg; - } - return 0; -} - -// ******************************** // -// Available Spills Implementation // -// ******************************** // - -/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified -/// stackslot register. The register is still available but is no longer -/// allowed to be modifed. -void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) { - std::multimap::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - I++; - assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1; - DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) - << " copied, it is available for use but can no longer be modified\n"); - } -} - -/// disallowClobberPhysReg - Unset the CanClobber bit of the specified -/// stackslot register and its aliases. The register and its aliases may -/// still available but is no longer allowed to be modifed. -void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) - disallowClobberPhysRegOnly(*AS); - disallowClobberPhysRegOnly(PhysReg); -} - -/// ClobberPhysRegOnly - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in it. -void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) { - std::multimap::iterator I = - PhysRegsAvailable.lower_bound(PhysReg); - while (I != PhysRegsAvailable.end() && I->first == PhysReg) { - int SlotOrReMat = I->second; - PhysRegsAvailable.erase(I++); - assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg && - "Bidirectional map mismatch!"); - SpillSlotsOrReMatsAvailable.erase(SlotOrReMat); - DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg) - << " clobbered, invalidating "); - if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n"); - else - DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n"); - } -} - -/// ClobberPhysReg - This is called when the specified physreg changes -/// value. We use this to invalidate any info about stuff we thing lives in -/// it and any of its aliases. -void AvailableSpills::ClobberPhysReg(unsigned PhysReg) { - for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS) - ClobberPhysRegOnly(*AS); - ClobberPhysRegOnly(PhysReg); -} - -/// AddAvailableRegsToLiveIn - Availability information is being kept coming -/// into the specified MBB. Add available physical registers as potential -/// live-in's. If they are reused in the MBB, they will be added to the -/// live-in set to make register scavenger and post-allocation scheduler. -void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, - BitVector &RegKills, - std::vector &KillOps) { - std::set NotAvailable; - for (std::multimap::iterator - I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end(); - I != E; ++I) { - unsigned Reg = I->first; - const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg); - // FIXME: A temporary workaround. We can't reuse available value if it's - // not safe to move the def of the virtual register's class. e.g. - // X86::RFP* register classes. Do not add it as a live-in. - if (!TII->isSafeToMoveRegClassDefs(RC)) - // This is no longer available. - NotAvailable.insert(Reg); - else { - MBB.addLiveIn(Reg); - if (RegKills[Reg]) - ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps); - } - - // Skip over the same register. - std::multimap::iterator NI = llvm::next(I); - while (NI != E && NI->first == Reg) { - ++I; - ++NI; - } - } - - for (std::set::iterator I = NotAvailable.begin(), - E = NotAvailable.end(); I != E; ++I) { - ClobberPhysReg(*I); - for (const unsigned *SubRegs = TRI->getSubRegisters(*I); - *SubRegs; ++SubRegs) - ClobberPhysReg(*SubRegs); - } -} - -/// ModifyStackSlotOrReMat - This method is called when the value in a stack -/// slot changes. This removes information about which register the previous -/// value for this slot lives in (as the previous value is dead now). -void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) { - std::map::iterator It = - SpillSlotsOrReMatsAvailable.find(SlotOrReMat); - if (It == SpillSlotsOrReMatsAvailable.end()) return; - unsigned Reg = It->second >> 1; - SpillSlotsOrReMatsAvailable.erase(It); - - // This register may hold the value of multiple stack slots, only remove this - // stack slot from the set of values the register contains. - std::multimap::iterator I = PhysRegsAvailable.lower_bound(Reg); - for (; ; ++I) { - assert(I != PhysRegsAvailable.end() && I->first == Reg && - "Map inverse broken!"); - if (I->second == SlotOrReMat) break; - } - PhysRegsAvailable.erase(I); -} - -void AvailableSpills::ClobberSharingStackSlots(int StackSlot) { - std::map::iterator It = - SpillSlotsOrReMatsAvailable.find(StackSlot); - if (It == SpillSlotsOrReMatsAvailable.end()) return; - unsigned Reg = It->second >> 1; - - // Erase entries in PhysRegsAvailable for other stack slots. - std::multimap::iterator I = PhysRegsAvailable.lower_bound(Reg); - while (I != PhysRegsAvailable.end() && I->first == Reg) { - std::multimap::iterator NextI = llvm::next(I); - if (I->second != StackSlot) { - DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in " - << PrintReg(Reg, TRI) << '\n'); - SpillSlotsOrReMatsAvailable.erase(I->second); - PhysRegsAvailable.erase(I); - } - I = NextI; - } -} - -// ************************** // -// Reuse Info Implementation // -// ************************** // - -/// GetRegForReload - We are about to emit a reload into PhysReg. If there -/// is some other operand that is using the specified register, either pick -/// a new register to use, or evict the previous reload and use this reg. -unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC, - unsigned PhysReg, - MachineFunction &MF, - MachineInstr *MI, AvailableSpills &Spills, - std::vector &MaybeDeadStores, - SmallSet &Rejected, - BitVector &RegKills, - std::vector &KillOps, - VirtRegMap &VRM) { - const TargetInstrInfo* TII = MF.getTarget().getInstrInfo(); - const TargetRegisterInfo *TRI = Spills.getRegInfo(); - - if (Reuses.empty()) return PhysReg; // This is most often empty. - - for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) { - ReusedOp &Op = Reuses[ro]; - // If we find some other reuse that was supposed to use this register - // exactly for its reload, we can change this reload to use ITS reload - // register. That is, unless its reload register has already been - // considered and subsequently rejected because it has also been reused - // by another operand. - if (Op.PhysRegReused == PhysReg && - Rejected.count(Op.AssignedPhysReg) == 0 && - RC->contains(Op.AssignedPhysReg)) { - // Yup, use the reload register that we didn't use before. - unsigned NewReg = Op.AssignedPhysReg; - Rejected.insert(PhysReg); - return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, - Rejected, RegKills, KillOps, VRM); - } else { - // Otherwise, we might also have a problem if a previously reused - // value aliases the new register. If so, codegen the previous reload - // and use this one. - unsigned PRRU = Op.PhysRegReused; - if (TRI->regsOverlap(PRRU, PhysReg)) { - // Okay, we found out that an alias of a reused register - // was used. This isn't good because it means we have - // to undo a previous reuse. - MachineBasicBlock *MBB = MI->getParent(); - const TargetRegisterClass *AliasRC = - MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg); - - // Copy Op out of the vector and remove it, we're going to insert an - // explicit load for it. - ReusedOp NewOp = Op; - Reuses.erase(Reuses.begin()+ro); - - // MI may be using only a sub-register of PhysRegUsed. - unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg(); - unsigned SubIdx = 0; - assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) && - "A reuse cannot be a virtual register"); - if (PRRU != RealPhysRegUsed) { - // What was the sub-register index? - SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed); - assert(SubIdx && - "Operand physreg is not a sub-register of PhysRegUsed"); - } - - // Ok, we're going to try to reload the assigned physreg into the - // slot that we were supposed to in the first place. However, that - // register could hold a reuse. Check to see if it conflicts or - // would prefer us to use a different register. - unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg, - MF, MI, Spills, MaybeDeadStores, - Rejected, RegKills, KillOps, VRM); - - bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT; - int SSorRMId = DoReMat - ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat; - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, - DoReMat, SSorRMId, TII, MF); - - if (DoReMat) { - ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII, - TRI, VRM); - } else { - TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg, - NewOp.StackSlotOrReMat, AliasRC, TRI); - MachineInstr *LoadMI = prior(InsertLoc); - VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI); - // Any stores to this stack slot are not dead anymore. - MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL; - ++NumLoads; - } - Spills.ClobberPhysReg(NewPhysReg); - Spills.ClobberPhysReg(NewOp.PhysRegReused); - - unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg; - MI->getOperand(NewOp.Operand).setReg(RReg); - MI->getOperand(NewOp.Operand).setSubReg(0); - - Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg); - UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); - DEBUG(dbgs() << '\t' << *prior(InsertLoc)); - - DEBUG(dbgs() << "Reuse undone!\n"); - --NumReused; - - // Finally, PhysReg is now available, go ahead and use it. - return PhysReg; - } - } - } - return PhysReg; -} - -// ************************************************************************ // - -/// FoldsStackSlotModRef - Return true if the specified MI folds the specified -/// stack slot mod/ref. It also checks if it's possible to unfold the -/// instruction by having it define a specified physical register instead. -static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg, - const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI, - VirtRegMap &VRM) { - if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI)) - return false; - - bool Found = false; - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) { - unsigned VirtReg = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - if (MR & VirtRegMap::isModRef) - if (VRM.getStackSlot(VirtReg) == SS) { - Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0; - break; - } - } - if (!Found) - return false; - - // Does the instruction uses a register that overlaps the scratch register? - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) { - if (!VRM.hasPhys(Reg)) - continue; - Reg = VRM.getPhys(Reg); - } - if (TRI->regsOverlap(PhysReg, Reg)) - return false; - } - return true; -} - -/// FindFreeRegister - Find a free register of a given register class by looking -/// at (at most) the last two machine instructions. -static unsigned FindFreeRegister(MachineBasicBlock::iterator MII, - MachineBasicBlock &MBB, - const TargetRegisterClass *RC, - const TargetRegisterInfo *TRI, - BitVector &AllocatableRegs) { - BitVector Defs(TRI->getNumRegs()); - BitVector Uses(TRI->getNumRegs()); - SmallVector LocalUses; - SmallVector Kills; - - // Take a look at 2 instructions at most. - unsigned Count = 0; - while (Count < 2) { - if (MII == MBB.begin()) - break; - MachineInstr *PrevMI = prior(MII); - MII = PrevMI; - - if (PrevMI->isDebugValue()) - continue; // Skip over dbg_value instructions. - ++Count; - - for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = PrevMI->getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; - unsigned Reg = MO.getReg(); - if (MO.isDef()) { - Defs.set(Reg); - for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) - Defs.set(*AS); - } else { - LocalUses.push_back(Reg); - if (MO.isKill() && AllocatableRegs[Reg]) - Kills.push_back(Reg); - } - } - - for (unsigned i = 0, e = Kills.size(); i != e; ++i) { - unsigned Kill = Kills[i]; - if (!Defs[Kill] && !Uses[Kill] && - RC->contains(Kill)) - return Kill; - } - for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) { - unsigned Reg = LocalUses[i]; - Uses.set(Reg); - for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) - Uses.set(*AS); - } - } - - return 0; -} - -static -void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg, - const TargetRegisterInfo &TRI) { - for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI->getOperand(i); - if (MO.isReg() && MO.getReg() == VirtReg) - substitutePhysReg(MO, PhysReg, TRI); - } -} - -namespace { - -struct RefSorter { - bool operator()(const std::pair &A, - const std::pair &B) { - return A.second < B.second; - } -}; - -// ***************************** // -// Local Spiller Implementation // -// ***************************** // - -class LocalRewriter : public VirtRegRewriter { - MachineRegisterInfo *MRI; - const TargetRegisterInfo *TRI; - const TargetInstrInfo *TII; - VirtRegMap *VRM; - LiveIntervals *LIs; - BitVector AllocatableRegs; - DenseMap DistanceMap; - DenseMap > Slot2DbgValues; - - MachineBasicBlock *MBB; // Basic block currently being processed. - -public: - - bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs); - -private: - void EraseInstr(MachineInstr *MI) { - VRM->RemoveMachineInstrFromMaps(MI); - LIs->RemoveMachineInstrFromMaps(MI); - MI->eraseFromParent(); - } - - bool OptimizeByUnfold2(unsigned VirtReg, int SS, - MachineBasicBlock::iterator &MII, - std::vector &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps); - - bool OptimizeByUnfold(MachineBasicBlock::iterator &MII, - std::vector &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps); - - bool CommuteToFoldReload(MachineBasicBlock::iterator &MII, - unsigned VirtReg, unsigned SrcReg, int SS, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps, - const TargetRegisterInfo *TRI); - - void SpillRegToStackSlot(MachineBasicBlock::iterator &MII, - int Idx, unsigned PhysReg, int StackSlot, - const TargetRegisterClass *RC, - bool isAvailable, MachineInstr *&LastStore, - AvailableSpills &Spills, - SmallSet &ReMatDefs, - BitVector &RegKills, - std::vector &KillOps); - - void TransferDeadness(unsigned Reg, BitVector &RegKills, - std::vector &KillOps); - - bool InsertEmergencySpills(MachineInstr *MI); - - bool InsertRestores(MachineInstr *MI, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps); - - bool InsertSpills(MachineInstr *MI); - - void ProcessUses(MachineInstr &MI, AvailableSpills &Spills, - std::vector &MaybeDeadStores, - BitVector &RegKills, - ReuseInfo &ReusedOperands, - std::vector &KillOps); - - void RewriteMBB(LiveIntervals *LIs, - AvailableSpills &Spills, BitVector &RegKills, - std::vector &KillOps); -}; -} - -bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm, - LiveIntervals* lis) { - MRI = &MF.getRegInfo(); - TRI = MF.getTarget().getRegisterInfo(); - TII = MF.getTarget().getInstrInfo(); - VRM = &vrm; - LIs = lis; - AllocatableRegs = TRI->getAllocatableSet(MF); - DEBUG(dbgs() << "\n**** Local spiller rewriting function '" - << MF.getFunction()->getName() << "':\n"); - DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and" - " reloads!) ****\n"); - DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); - - // Spills - Keep track of which spilled values are available in physregs - // so that we can choose to reuse the physregs instead of emitting - // reloads. This is usually refreshed per basic block. - AvailableSpills Spills(TRI, TII); - - // Keep track of kill information. - BitVector RegKills(TRI->getNumRegs()); - std::vector KillOps; - KillOps.resize(TRI->getNumRegs(), NULL); - - // SingleEntrySuccs - Successor blocks which have a single predecessor. - SmallVector SinglePredSuccs; - SmallPtrSet EarlyVisited; - - // Traverse the basic blocks depth first. - MachineBasicBlock *Entry = MF.begin(); - SmallPtrSet Visited; - for (df_ext_iterator > - DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); - DFI != E; ++DFI) { - MBB = *DFI; - if (!EarlyVisited.count(MBB)) - RewriteMBB(LIs, Spills, RegKills, KillOps); - - // If this MBB is the only predecessor of a successor. Keep the - // availability information and visit it next. - do { - // Keep visiting single predecessor successor as long as possible. - SinglePredSuccs.clear(); - findSinglePredSuccessor(MBB, SinglePredSuccs); - if (SinglePredSuccs.empty()) - MBB = 0; - else { - // FIXME: More than one successors, each of which has MBB has - // the only predecessor. - MBB = SinglePredSuccs[0]; - if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) { - Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps); - RewriteMBB(LIs, Spills, RegKills, KillOps); - } - } - } while (MBB); - - // Clear the availability info. - Spills.clear(); - } - - DEBUG(dbgs() << "**** Post Machine Instrs ****\n"); - DEBUG(MF.print(dbgs(), LIs->getSlotIndexes())); - - // Mark unused spill slots. - MachineFrameInfo *MFI = MF.getFrameInfo(); - int SS = VRM->getLowSpillSlot(); - if (SS != VirtRegMap::NO_STACK_SLOT) { - for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) { - SmallVector &DbgValues = Slot2DbgValues[SS]; - if (!VRM->isSpillSlotUsed(SS)) { - MFI->RemoveStackObject(SS); - for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) { - MachineInstr *DVMI = DbgValues[j]; - DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n'); - EraseInstr(DVMI); - } - ++NumDSS; - } - DbgValues.clear(); - } - } - Slot2DbgValues.clear(); - - return true; -} - -/// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if -/// a scratch register is available. -/// xorq %r12, %r13 -/// addq %rax, -184(%rbp) -/// addq %r13, -184(%rbp) -/// ==> -/// xorq %r12, %r13 -/// movq -184(%rbp), %r12 -/// addq %rax, %r12 -/// addq %r13, %r12 -/// movq %r12, -184(%rbp) -bool LocalRewriter:: -OptimizeByUnfold2(unsigned VirtReg, int SS, - MachineBasicBlock::iterator &MII, - std::vector &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps) { - - MachineBasicBlock::iterator NextMII = llvm::next(MII); - // Skip over dbg_value instructions. - while (NextMII != MBB->end() && NextMII->isDebugValue()) - NextMII = llvm::next(NextMII); - if (NextMII == MBB->end()) - return false; - - if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0) - return false; - - // Now let's see if the last couple of instructions happens to have freed up - // a register. - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs); - if (!PhysReg) - return false; - - MachineFunction &MF = *MBB->getParent(); - TRI = MF.getTarget().getRegisterInfo(); - MachineInstr &MI = *MII; - if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM)) - return false; - - // If the next instruction also folds the same SS modref and can be unfoled, - // then it's worthwhile to issue a load from SS into the free register and - // then unfold these instructions. - if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)) - return false; - - // Back-schedule reloads and remats. - ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF); - - // Load from SS to the spare physical register. - TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI); - // This invalidates Phys. - Spills.ClobberPhysReg(PhysReg); - // Remember it's available. - Spills.addAvailable(SS, PhysReg); - MaybeDeadStores[SS] = NULL; - - // Unfold current MI. - SmallVector NewMIs; - if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs)) - llvm_unreachable("Unable unfold the load / store folding instruction!"); - assert(NewMIs.size() == 1); - AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); - VRM->transferRestorePts(&MI, NewMIs[0]); - MII = MBB->insert(MII, NewMIs[0]); - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - ++NumModRefUnfold; - - // Unfold next instructions that fold the same SS. - do { - MachineInstr &NextMI = *NextMII; - NextMII = llvm::next(NextMII); - NewMIs.clear(); - if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs)) - llvm_unreachable("Unable unfold the load / store folding instruction!"); - assert(NewMIs.size() == 1); - AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI); - VRM->transferRestorePts(&NextMI, NewMIs[0]); - MBB->insert(NextMII, NewMIs[0]); - InvalidateKills(NextMI, TRI, RegKills, KillOps); - EraseInstr(&NextMI); - ++NumModRefUnfold; - // Skip over dbg_value instructions. - while (NextMII != MBB->end() && NextMII->isDebugValue()) - NextMII = llvm::next(NextMII); - if (NextMII == MBB->end()) - break; - } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM)); - - // Store the value back into SS. - TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI); - MachineInstr *StoreMI = prior(NextMII); - VRM->addSpillSlotUse(SS, StoreMI); - VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - - return true; -} - -/// OptimizeByUnfold - Turn a store folding instruction into a load folding -/// instruction. e.g. -/// xorl %edi, %eax -/// movl %eax, -32(%ebp) -/// movl -36(%ebp), %eax -/// orl %eax, -32(%ebp) -/// ==> -/// xorl %edi, %eax -/// orl -36(%ebp), %eax -/// mov %eax, -32(%ebp) -/// This enables unfolding optimization for a subsequent instruction which will -/// also eliminate the newly introduced store instruction. -bool LocalRewriter:: -OptimizeByUnfold(MachineBasicBlock::iterator &MII, - std::vector &MaybeDeadStores, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps) { - MachineFunction &MF = *MBB->getParent(); - MachineInstr &MI = *MII; - unsigned UnfoldedOpc = 0; - unsigned UnfoldPR = 0; - unsigned UnfoldVR = 0; - int FoldedSS = VirtRegMap::NO_STACK_SLOT; - VirtRegMap::MI2VirtMapTy::const_iterator I, End; - for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) { - // Only transform a MI that folds a single register. - if (UnfoldedOpc) - return false; - UnfoldVR = I->second.first; - VirtRegMap::ModRef MR = I->second.second; - // MI2VirtMap be can updated which invalidate the iterator. - // Increment the iterator first. - ++I; - if (VRM->isAssignedReg(UnfoldVR)) - continue; - // If this reference is not a use, any previous store is now dead. - // Otherwise, the store to this stack slot is not dead anymore. - FoldedSS = VRM->getStackSlot(UnfoldVR); - MachineInstr* DeadStore = MaybeDeadStores[FoldedSS]; - if (DeadStore && (MR & VirtRegMap::isModRef)) { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS); - if (!PhysReg || !DeadStore->readsRegister(PhysReg)) - continue; - UnfoldPR = PhysReg; - UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), - false, true); - } - } - - if (!UnfoldedOpc) { - if (!UnfoldVR) - return false; - - // Look for other unfolding opportunities. - return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills, - RegKills, KillOps); - } - - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse()) - continue; - unsigned VirtReg = MO.getReg(); - if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg()) - continue; - if (VRM->isAssignedReg(VirtReg)) { - unsigned PhysReg = VRM->getPhys(VirtReg); - if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR)) - return false; - } else if (VRM->isReMaterialized(VirtReg)) - continue; - int SS = VRM->getStackSlot(VirtReg); - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - if (PhysReg) { - if (TRI->regsOverlap(PhysReg, UnfoldPR)) - return false; - continue; - } - if (VRM->hasPhys(VirtReg)) { - PhysReg = VRM->getPhys(VirtReg); - if (!TRI->regsOverlap(PhysReg, UnfoldPR)) - continue; - } - - // Ok, we'll need to reload the value into a register which makes - // it impossible to perform the store unfolding optimization later. - // Let's see if it is possible to fold the load if the store is - // unfolded. This allows us to perform the store unfolding - // optimization. - SmallVector NewMIs; - if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) { - assert(NewMIs.size() == 1); - MachineInstr *NewMI = NewMIs.back(); - MBB->insert(MII, NewMI); - NewMIs.clear(); - int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false); - assert(Idx != -1); - SmallVector Ops; - Ops.push_back(Idx); - MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS); - NewMI->eraseFromParent(); - if (FoldedMI) { - VRM->addSpillSlotUse(SS, FoldedMI); - if (!VRM->hasPhys(UnfoldVR)) - VRM->assignVirt2Phys(UnfoldVR, UnfoldPR); - VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); - MII = FoldedMI; - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - return true; - } - } - } - - return false; -} - -/// CommuteChangesDestination - We are looking for r0 = op r1, r2 and -/// where SrcReg is r1 and it is tied to r0. Return true if after -/// commuting this instruction it will be r0 = op r2, r1. -static bool CommuteChangesDestination(MachineInstr *DefMI, - const MCInstrDesc &MCID, - unsigned SrcReg, - const TargetInstrInfo *TII, - unsigned &DstIdx) { - if (MCID.getNumDefs() != 1 && MCID.getNumOperands() != 3) - return false; - if (!DefMI->getOperand(1).isReg() || - DefMI->getOperand(1).getReg() != SrcReg) - return false; - unsigned DefIdx; - if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0) - return false; - unsigned SrcIdx1, SrcIdx2; - if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2)) - return false; - if (SrcIdx1 == 1 && SrcIdx2 == 2) { - DstIdx = 2; - return true; - } - return false; -} - -/// CommuteToFoldReload - -/// Look for -/// r1 = load fi#1 -/// r1 = op r1, r2 -/// store r1, fi#1 -/// -/// If op is commutable and r2 is killed, then we can xform these to -/// r2 = op r2, fi#1 -/// store r2, fi#1 -bool LocalRewriter:: -CommuteToFoldReload(MachineBasicBlock::iterator &MII, - unsigned VirtReg, unsigned SrcReg, int SS, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps, - const TargetRegisterInfo *TRI) { - if (MII == MBB->begin() || !MII->killsRegister(SrcReg)) - return false; - - MachineInstr &MI = *MII; - MachineBasicBlock::iterator DefMII = prior(MII); - MachineInstr *DefMI = DefMII; - const MCInstrDesc &MCID = DefMI->getDesc(); - unsigned NewDstIdx; - if (DefMII != MBB->begin() && - MCID.isCommutable() && - CommuteChangesDestination(DefMI, MCID, SrcReg, TII, NewDstIdx)) { - MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); - unsigned NewReg = NewDstMO.getReg(); - if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg)) - return false; - MachineInstr *ReloadMI = prior(DefMII); - int FrameIdx; - unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx); - if (DestReg != SrcReg || FrameIdx != SS) - return false; - int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false); - if (UseIdx == -1) - return false; - unsigned DefIdx; - if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx)) - return false; - assert(DefMI->getOperand(DefIdx).isReg() && - DefMI->getOperand(DefIdx).getReg() == SrcReg); - - // Now commute def instruction. - MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true); - if (!CommutedMI) - return false; - MBB->insert(MII, CommutedMI); - SmallVector Ops; - Ops.push_back(NewDstIdx); - MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS); - // Not needed since foldMemoryOperand returns new MI. - CommutedMI->eraseFromParent(); - if (!FoldedMI) - return false; - - VRM->addSpillSlotUse(SS, FoldedMI); - VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef); - // Insert new def MI and spill MI. - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI); - MII = prior(MII); - MachineInstr *StoreMI = MII; - VRM->addSpillSlotUse(SS, StoreMI); - VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - MII = FoldedMI; // Update MII to backtrack. - - // Delete all 3 old instructions. - InvalidateKills(*ReloadMI, TRI, RegKills, KillOps); - EraseInstr(ReloadMI); - InvalidateKills(*DefMI, TRI, RegKills, KillOps); - EraseInstr(DefMI); - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - - // If NewReg was previously holding value of some SS, it's now clobbered. - // This has to be done now because it's a physical register. When this - // instruction is re-visited, it's ignored. - Spills.ClobberPhysReg(NewReg); - - ++NumCommutes; - return true; - } - - return false; -} - -/// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if -/// the last store to the same slot is now dead. If so, remove the last store. -void LocalRewriter:: -SpillRegToStackSlot(MachineBasicBlock::iterator &MII, - int Idx, unsigned PhysReg, int StackSlot, - const TargetRegisterClass *RC, - bool isAvailable, MachineInstr *&LastStore, - AvailableSpills &Spills, - SmallSet &ReMatDefs, - BitVector &RegKills, - std::vector &KillOps) { - - MachineBasicBlock::iterator oldNextMII = llvm::next(MII); - TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC, - TRI); - MachineInstr *StoreMI = prior(oldNextMII); - VRM->addSpillSlotUse(StackSlot, StoreMI); - DEBUG(dbgs() << "Store:\t" << *StoreMI); - - // If there is a dead store to this stack slot, nuke it now. - if (LastStore) { - DEBUG(dbgs() << "Removed dead store:\t" << *LastStore); - ++NumDSE; - SmallVector KillRegs; - InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs); - MachineBasicBlock::iterator PrevMII = LastStore; - bool CheckDef = PrevMII != MBB->begin(); - if (CheckDef) - --PrevMII; - EraseInstr(LastStore); - if (CheckDef) { - // Look at defs of killed registers on the store. Mark the defs - // as dead since the store has been deleted and they aren't - // being reused. - for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) { - bool HasOtherDef = false; - if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) { - MachineInstr *DeadDef = PrevMII; - if (ReMatDefs.count(DeadDef) && !HasOtherDef) { - // FIXME: This assumes a remat def does not have side effects. - EraseInstr(DeadDef); - ++NumDRM; - } - } - } - } - } - - // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume - // the last of multiple instructions is the actual store. - LastStore = prior(oldNextMII); - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register available, - // in PhysReg. - Spills.ModifyStackSlotOrReMat(StackSlot); - Spills.ClobberPhysReg(PhysReg); - Spills.addAvailable(StackSlot, PhysReg, isAvailable); - ++NumStores; -} - -/// isSafeToDelete - Return true if this instruction doesn't produce any side -/// effect and all of its defs are dead. -static bool isSafeToDelete(MachineInstr &MI) { - const MCInstrDesc &MCID = MI.getDesc(); - if (MCID.mayLoad() || MCID.mayStore() || MCID.isTerminator() || - MCID.isCall() || MCID.isBarrier() || MCID.isReturn() || - MI.isLabel() || MI.isDebugValue() || - MI.hasUnmodeledSideEffects()) - return false; - - // Technically speaking inline asm without side effects and no defs can still - // be deleted. But there is so much bad inline asm code out there, we should - // let them be. - if (MI.isInlineAsm()) - return false; - - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || !MO.getReg()) - continue; - if (MO.isDef() && !MO.isDead()) - return false; - if (MO.isUse() && MO.isKill()) - // FIXME: We can't remove kill markers or else the scavenger will assert. - // An alternative is to add a ADD pseudo instruction to replace kill - // markers. - return false; - } - return true; -} - -/// TransferDeadness - A identity copy definition is dead and it's being -/// removed. Find the last def or use and mark it as dead / kill. -void LocalRewriter:: -TransferDeadness(unsigned Reg, BitVector &RegKills, - std::vector &KillOps) { - SmallPtrSet Seens; - SmallVector,8> Refs; - for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), - RE = MRI->reg_end(); RI != RE; ++RI) { - MachineInstr *UDMI = &*RI; - if (UDMI->isDebugValue() || UDMI->getParent() != MBB) - continue; - DenseMap::iterator DI = DistanceMap.find(UDMI); - if (DI == DistanceMap.end()) - continue; - if (Seens.insert(UDMI)) - Refs.push_back(std::make_pair(UDMI, DI->second)); - } - - if (Refs.empty()) - return; - std::sort(Refs.begin(), Refs.end(), RefSorter()); - - while (!Refs.empty()) { - MachineInstr *LastUDMI = Refs.back().first; - Refs.pop_back(); - - MachineOperand *LastUD = NULL; - for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = LastUDMI->getOperand(i); - if (!MO.isReg() || MO.getReg() != Reg) - continue; - if (!LastUD || (LastUD->isUse() && MO.isDef())) - LastUD = &MO; - if (LastUDMI->isRegTiedToDefOperand(i)) - break; - } - if (LastUD->isDef()) { - // If the instruction has no side effect, delete it and propagate - // backward further. Otherwise, mark is dead and we are done. - if (!isSafeToDelete(*LastUDMI)) { - LastUD->setIsDead(); - break; - } - EraseInstr(LastUDMI); - } else { - LastUD->setIsKill(); - RegKills.set(Reg); - KillOps[Reg] = LastUD; - break; - } - } -} - -/// InsertEmergencySpills - Insert emergency spills before MI if requested by -/// VRM. Return true if spills were inserted. -bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) { - if (!VRM->hasEmergencySpills(MI)) - return false; - MachineBasicBlock::iterator MII = MI; - SmallSet UsedSS; - std::vector &EmSpills = VRM->getEmergencySpills(MI); - for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) { - unsigned PhysReg = EmSpills[i]; - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg); - assert(RC && "Unable to determine register class!"); - int SS = VRM->getEmergencySpillSlot(RC); - if (UsedSS.count(SS)) - llvm_unreachable("Need to spill more than one physical registers!"); - UsedSS.insert(SS); - TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI); - MachineInstr *StoreMI = prior(MII); - VRM->addSpillSlotUse(SS, StoreMI); - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS, - TII, *MBB->getParent()); - - TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI); - - MachineInstr *LoadMI = prior(InsertLoc); - VRM->addSpillSlotUse(SS, LoadMI); - ++NumPSpills; - DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); - } - return true; -} - -/// InsertRestores - Restore registers before MI is requested by VRM. Return -/// true is any instructions were inserted. -bool LocalRewriter::InsertRestores(MachineInstr *MI, - AvailableSpills &Spills, - BitVector &RegKills, - std::vector &KillOps) { - if (!VRM->isRestorePt(MI)) - return false; - MachineBasicBlock::iterator MII = MI; - std::vector &RestoreRegs = VRM->getRestorePtRestores(MI); - for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) { - unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order. - if (!VRM->getPreSplitReg(VirtReg)) - continue; // Split interval spilled again. - unsigned Phys = VRM->getPhys(VirtReg); - MRI->setPhysRegUsed(Phys); - - // Check if the value being restored if available. If so, it must be - // from a predecessor BB that fallthrough into this BB. We do not - // expect: - // BB1: - // r1 = load fi#1 - // ... - // = r1 - // ... # r1 not clobbered - // ... - // = load fi#1 - bool DoReMat = VRM->isReMaterialized(VirtReg); - int SSorRMId = DoReMat - ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); - unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - if (InReg == Phys) { - // If the value is already available in the expected register, save - // a reload / remat. - if (SSorRMId) - DEBUG(dbgs() << "Reusing RM#" - << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << SSorRMId); - DEBUG(dbgs() << " from physreg " - << TRI->getName(InReg) << " for " << PrintReg(VirtReg) - <<" instead of reloading into physreg " - << TRI->getName(Phys) << '\n'); - - // Reusing a physreg may resurrect it. But we expect ProcessUses to update - // the kill flags for the current instruction after processing it. - - ++NumOmitted; - continue; - } else if (InReg && InReg != Phys) { - if (SSorRMId) - DEBUG(dbgs() << "Reusing RM#" - << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << SSorRMId); - DEBUG(dbgs() << " from physreg " - << TRI->getName(InReg) << " for " << PrintReg(VirtReg) - <<" by copying it into physreg " - << TRI->getName(Phys) << '\n'); - - // If the reloaded / remat value is available in another register, - // copy it to the desired register. - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, - *MBB->getParent()); - MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(), - TII->get(TargetOpcode::COPY), Phys) - .addReg(InReg, RegState::Kill); - - // This invalidates Phys. - Spills.ClobberPhysReg(Phys); - // Remember it's available. - Spills.addAvailable(SSorRMId, Phys); - - CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); - UpdateKills(*CopyMI, TRI, RegKills, KillOps); - - DEBUG(dbgs() << '\t' << *CopyMI); - ++NumCopified; - continue; - } - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII, - *MBB->getParent()); - - if (VRM->isReMaterialized(VirtReg)) { - ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM); - } else { - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI); - MachineInstr *LoadMI = prior(InsertLoc); - VRM->addSpillSlotUse(SSorRMId, LoadMI); - ++NumLoads; - DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); - } - - // This invalidates Phys. - Spills.ClobberPhysReg(Phys); - // Remember it's available. - Spills.addAvailable(SSorRMId, Phys); - - UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); - DEBUG(dbgs() << '\t' << *prior(MII)); - } - return true; -} - -/// InsertSpills - Insert spills after MI if requested by VRM. Return -/// true if spills were inserted. -bool LocalRewriter::InsertSpills(MachineInstr *MI) { - if (!VRM->isSpillPt(MI)) - return false; - MachineBasicBlock::iterator MII = MI; - std::vector > &SpillRegs = - VRM->getSpillPtSpills(MI); - for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) { - unsigned VirtReg = SpillRegs[i].first; - bool isKill = SpillRegs[i].second; - if (!VRM->getPreSplitReg(VirtReg)) - continue; // Split interval spilled again. - const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); - unsigned Phys = VRM->getPhys(VirtReg); - int StackSlot = VRM->getStackSlot(VirtReg); - MachineBasicBlock::iterator oldNextMII = llvm::next(MII); - TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot, - RC, TRI); - MachineInstr *StoreMI = prior(oldNextMII); - VRM->addSpillSlotUse(StackSlot, StoreMI); - DEBUG(dbgs() << "Store:\t" << *StoreMI); - VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod); - } - return true; -} - - -/// ProcessUses - Process all of MI's spilled operands and all available -/// operands. -void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills, - std::vector &MaybeDeadStores, - BitVector &RegKills, - ReuseInfo &ReusedOperands, - std::vector &KillOps) { - // Clear kill info. - SmallSet KilledMIRegs; - SmallVector VirtUseOps; - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!MO.isReg() || MO.getReg() == 0) - continue; // Ignore non-register operands. - - unsigned VirtReg = MO.getReg(); - - if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) { - // Ignore physregs for spilling, but remember that it is used by this - // function. - MRI->setPhysRegUsed(VirtReg); - continue; - } - - // We want to process implicit virtual register uses first. - if (MO.isImplicit()) - // If the virtual register is implicitly defined, emit a implicit_def - // before so scavenger knows it's "defined". - // FIXME: This is a horrible hack done the by register allocator to - // remat a definition with virtual register operand. - VirtUseOps.insert(VirtUseOps.begin(), i); - else - VirtUseOps.push_back(i); - - // A partial def causes problems because the same operand both reads and - // writes the register. This rewriter is designed to rewrite uses and defs - // separately, so a partial def would already have been rewritten to a - // physreg by the time we get to processing defs. - // Add an implicit use operand to model the partial def. - if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) && - MI.findRegisterUseOperandIdx(VirtReg) == -1) { - VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands()); - MI.addOperand(MachineOperand::CreateReg(VirtReg, - false, // isDef - true)); // isImplicit - DEBUG(dbgs() << "Partial redef: " << MI); - } - } - - // Process all of the spilled uses and all non spilled reg references. - SmallVector PotentialDeadStoreSlots; - KilledMIRegs.clear(); - for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) { - unsigned i = VirtUseOps[j]; - unsigned VirtReg = MI.getOperand(i).getReg(); - assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && - "Not a virtual register?"); - - unsigned SubIdx = MI.getOperand(i).getSubReg(); - if (VRM->isAssignedReg(VirtReg)) { - // This virtual register was assigned a physreg! - unsigned Phys = VRM->getPhys(VirtReg); - MRI->setPhysRegUsed(Phys); - if (MI.getOperand(i).isDef()) - ReusedOperands.markClobbered(Phys); - substitutePhysReg(MI.getOperand(i), Phys, *TRI); - if (VRM->isImplicitlyDefined(VirtReg)) - // FIXME: Is this needed? - BuildMI(*MBB, &MI, MI.getDebugLoc(), - TII->get(TargetOpcode::IMPLICIT_DEF), Phys); - continue; - } - - // This virtual register is now known to be a spilled value. - if (!MI.getOperand(i).isUse()) - continue; // Handle defs in the loop below (handle use&def here though) - - bool AvoidReload = MI.getOperand(i).isUndef(); - // Check if it is defined by an implicit def. It should not be spilled. - // Note, this is for correctness reason. e.g. - // 8 %reg1024 = IMPLICIT_DEF - // 12 %reg1024 = INSERT_SUBREG %reg1024, %reg1025, 2 - // The live range [12, 14) are not part of the r1024 live interval since - // it's defined by an implicit def. It will not conflicts with live - // interval of r1025. Now suppose both registers are spilled, you can - // easily see a situation where both registers are reloaded before - // the INSERT_SUBREG and both target registers that would overlap. - bool DoReMat = VRM->isReMaterialized(VirtReg); - int SSorRMId = DoReMat - ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg); - int ReuseSlot = SSorRMId; - - // Check to see if this stack slot is available. - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId); - - // If this is a sub-register use, make sure the reuse register is in the - // right register class. For example, for x86 not all of the 32-bit - // registers have accessible sub-registers. - // Similarly so for EXTRACT_SUBREG. Consider this: - // EDI = op - // MOV32_mr fi#1, EDI - // ... - // = EXTRACT_SUBREG fi#1 - // fi#1 is available in EDI, but it cannot be reused because it's not in - // the right register file. - if (PhysReg && !AvoidReload && SubIdx) { - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - if (!RC->contains(PhysReg)) - PhysReg = 0; - } - - if (PhysReg && !AvoidReload) { - // This spilled operand might be part of a two-address operand. If this - // is the case, then changing it will necessarily require changing the - // def part of the instruction as well. However, in some cases, we - // aren't allowed to modify the reused register. If none of these cases - // apply, reuse it. - bool CanReuse = true; - bool isTied = MI.isRegTiedToDefOperand(i); - if (isTied) { - // Okay, we have a two address operand. We can reuse this physreg as - // long as we are allowed to clobber the value and there isn't an - // earlier def that has already clobbered the physreg. - CanReuse = !ReusedOperands.isClobbered(PhysReg) && - Spills.canClobberPhysReg(PhysReg); - } - // If this is an asm, and a PhysReg alias is used elsewhere as an - // earlyclobber operand, we can't also use it as an input. - if (MI.isInlineAsm()) { - for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) { - MachineOperand &MOk = MI.getOperand(k); - if (MOk.isReg() && MOk.isEarlyClobber() && - TRI->regsOverlap(MOk.getReg(), PhysReg)) { - CanReuse = false; - DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg) - << " for " << PrintReg(VirtReg) << ": " << MOk - << '\n'); - break; - } - } - } - - if (CanReuse) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "Reusing RM#" - << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); - DEBUG(dbgs() << " from physreg " - << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg) - << " instead of reloading into " - << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n'); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - - // Reusing a physreg may resurrect it. But we expect ProcessUses to - // update the kill flags for the current instr after processing it. - - // The only technical detail we have is that we don't know that - // PhysReg won't be clobbered by a reloaded stack slot that occurs - // later in the instruction. In particular, consider 'op V1, V2'. - // If V1 is available in physreg R0, we would choose to reuse it - // here, instead of reloading it into the register the allocator - // indicated (say R1). However, V2 might have to be reloaded - // later, and it might indicate that it needs to live in R0. When - // this occurs, we need to have information available that - // indicates it is safe to use R1 for the reload instead of R0. - // - // To further complicate matters, we might conflict with an alias, - // or R0 and R1 might not be compatible with each other. In this - // case, we actually insert a reload for V1 in R1, ensuring that - // we can get at R0 or its alias. - ReusedOperands.addReuse(i, ReuseSlot, PhysReg, - VRM->getPhys(VirtReg), VirtReg); - if (isTied) - // Only mark it clobbered if this is a use&def operand. - ReusedOperands.markClobbered(PhysReg); - ++NumReused; - - if (MI.getOperand(i).isKill() && - ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) { - - // The store of this spilled value is potentially dead, but we - // won't know for certain until we've confirmed that the re-use - // above is valid, which means waiting until the other operands - // are processed. For now we just track the spill slot, we'll - // remove it after the other operands are processed if valid. - - PotentialDeadStoreSlots.push_back(ReuseSlot); - } - - // Mark is isKill if it's there no other uses of the same virtual - // register and it's not a two-address operand. IsKill will be - // unset if reg is reused. - if (!isTied && KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - continue; - } // CanReuse - - // Otherwise we have a situation where we have a two-address instruction - // whose mod/ref operand needs to be reloaded. This reload is already - // available in some register "PhysReg", but if we used PhysReg as the - // operand to our 2-addr instruction, the instruction would modify - // PhysReg. This isn't cool if something later uses PhysReg and expects - // to get its initial value. - // - // To avoid this problem, and to avoid doing a load right after a store, - // we emit a copy from PhysReg into the designated register for this - // operand. - // - // This case also applies to an earlyclobber'd PhysReg. - unsigned DesignatedReg = VRM->getPhys(VirtReg); - assert(DesignatedReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - DesignatedReg = ReusedOperands. - GetRegForReload(VirtReg, DesignatedReg, &MI, Spills, - MaybeDeadStores, RegKills, KillOps, *VRM); - - // If the mapped designated register is actually the physreg we have - // incoming, we don't need to inserted a dead copy. - if (DesignatedReg == PhysReg) { - // If this stack slot value is already available, reuse it! - if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT) - DEBUG(dbgs() << "Reusing RM#" - << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1); - else - DEBUG(dbgs() << "Reusing SS#" << ReuseSlot); - DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg) - << " for " << PrintReg(VirtReg) - << " instead of reloading into same physreg.\n"); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - ReusedOperands.markClobbered(RReg); - ++NumReused; - continue; - } - - MRI->setPhysRegUsed(DesignatedReg); - ReusedOperands.markClobbered(DesignatedReg); - - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat, - SSorRMId, TII, *MBB->getParent()); - MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(), - TII->get(TargetOpcode::COPY), - DesignatedReg).addReg(PhysReg); - CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse); - UpdateKills(*CopyMI, TRI, RegKills, KillOps); - - // This invalidates DesignatedReg. - Spills.ClobberPhysReg(DesignatedReg); - - Spills.addAvailable(ReuseSlot, DesignatedReg); - unsigned RReg = - SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - DEBUG(dbgs() << '\t' << *prior(InsertLoc)); - ++NumReused; - continue; - } // if (PhysReg) - - // Otherwise, reload it and remember that we have it. - PhysReg = VRM->getPhys(VirtReg); - assert(PhysReg && "Must map virtreg to physreg!"); - - // Note that, if we reused a register for a previous operand, the - // register we want to reload into might not actually be - // available. If this occurs, use the register indicated by the - // reuser. - if (ReusedOperands.hasReuses()) - PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, *VRM); - - MRI->setPhysRegUsed(PhysReg); - ReusedOperands.markClobbered(PhysReg); - if (AvoidReload) - ++NumAvoided; - else { - // Back-schedule reloads and remats. - MachineBasicBlock::iterator InsertLoc = - ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat, - SSorRMId, TII, *MBB->getParent()); - - if (DoReMat) { - ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM); - } else { - const TargetRegisterClass* RC = MRI->getRegClass(VirtReg); - TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI); - MachineInstr *LoadMI = prior(InsertLoc); - VRM->addSpillSlotUse(SSorRMId, LoadMI); - ++NumLoads; - DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size())); - } - // This invalidates PhysReg. - Spills.ClobberPhysReg(PhysReg); - - // Any stores to this stack slot are not dead anymore. - if (!DoReMat) - MaybeDeadStores[SSorRMId] = NULL; - Spills.addAvailable(SSorRMId, PhysReg); - // Assumes this is the last use. IsKill will be unset if reg is reused - // unless it's a two-address operand. - if (!MI.isRegTiedToDefOperand(i) && - KilledMIRegs.count(VirtReg) == 0) { - MI.getOperand(i).setIsKill(); - KilledMIRegs.insert(VirtReg); - } - - UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps); - DEBUG(dbgs() << '\t' << *prior(InsertLoc)); - } - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - } - - // Ok - now we can remove stores that have been confirmed dead. - for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) { - // This was the last use and the spilled value is still available - // for reuse. That means the spill was unnecessary! - int PDSSlot = PotentialDeadStoreSlots[j]; - MachineInstr* DeadStore = MaybeDeadStores[PDSSlot]; - if (DeadStore) { - DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); - InvalidateKills(*DeadStore, TRI, RegKills, KillOps); - EraseInstr(DeadStore); - MaybeDeadStores[PDSSlot] = NULL; - ++NumDSE; - } - } -} - -/// rewriteMBB - Keep track of which spills are available even after the -/// register allocator is done with them. If possible, avoid reloading vregs. -void -LocalRewriter::RewriteMBB(LiveIntervals *LIs, - AvailableSpills &Spills, BitVector &RegKills, - std::vector &KillOps) { - - DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '" - << MBB->getName() << "':\n"); - - MachineFunction &MF = *MBB->getParent(); - - // MaybeDeadStores - When we need to write a value back into a stack slot, - // keep track of the inserted store. If the stack slot value is never read - // (because the value was used from some available register, for example), and - // subsequently stored to, the original store is dead. This map keeps track - // of inserted stores that are not used. If we see a subsequent store to the - // same stack slot, the original store is deleted. - std::vector MaybeDeadStores; - MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL); - - // ReMatDefs - These are rematerializable def MIs which are not deleted. - SmallSet ReMatDefs; - - // Keep track of the registers we have already spilled in case there are - // multiple defs of the same register in MI. - SmallSet SpilledMIRegs; - - RegKills.reset(); - KillOps.clear(); - KillOps.resize(TRI->getNumRegs(), NULL); - - DistanceMap.clear(); - for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end(); - MII != E; ) { - MachineBasicBlock::iterator NextMII = llvm::next(MII); - - if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps)) - NextMII = llvm::next(MII); - - if (InsertEmergencySpills(MII)) - NextMII = llvm::next(MII); - - InsertRestores(MII, Spills, RegKills, KillOps); - - if (InsertSpills(MII)) - NextMII = llvm::next(MII); - - bool Erased = false; - bool BackTracked = false; - MachineInstr &MI = *MII; - - // Remember DbgValue's which reference stack slots. - if (MI.isDebugValue() && MI.getOperand(0).isFI()) - Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI); - - /// ReusedOperands - Keep track of operand reuse in case we need to undo - /// reuse. - ReuseInfo ReusedOperands(MI, TRI); - - ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps); - - DEBUG(dbgs() << '\t' << MI); - - - // If we have folded references to memory operands, make sure we clear all - // physical registers that may contain the value of the spilled virtual - // register - - // Copy the folded virts to a small vector, we may change MI2VirtMap. - SmallVector, 4> FoldedVirts; - // C++0x FTW! - for (std::pair FVRange = - VRM->getFoldedVirts(&MI); - FVRange.first != FVRange.second; ++FVRange.first) - FoldedVirts.push_back(FVRange.first->second); - - SmallSet FoldedSS; - for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) { - unsigned VirtReg = FoldedVirts[FVI].first; - VirtRegMap::ModRef MR = FoldedVirts[FVI].second; - DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR); - - int SS = VRM->getStackSlot(VirtReg); - if (SS == VirtRegMap::NO_STACK_SLOT) - continue; - FoldedSS.insert(SS); - DEBUG(dbgs() << " - StackSlot: " << SS << "\n"); - - // If this folded instruction is just a use, check to see if it's a - // straight load from the virt reg slot. - if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) { - int FrameIdx; - unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx); - if (DestReg && FrameIdx == SS) { - // If this spill slot is available, turn it into a copy (or nothing) - // instead of leaving it as a load! - if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) { - DEBUG(dbgs() << "Promoted Load To Copy: " << MI); - if (DestReg != InReg) { - MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg); - MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(), - TII->get(TargetOpcode::COPY)) - .addReg(DestReg, RegState::Define, DefMO->getSubReg()) - .addReg(InReg, RegState::Kill); - // Revisit the copy so we make sure to notice the effects of the - // operation on the destreg (either needing to RA it if it's - // virtual or needing to clobber any values if it's physical). - NextMII = CopyMI; - NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse); - BackTracked = true; - } else { - DEBUG(dbgs() << "Removing now-noop copy: " << MI); - // InvalidateKills resurrects any prior kill of the copy's source - // allowing the source reg to be reused in place of the copy. - Spills.disallowClobberPhysReg(InReg); - } - - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - Erased = true; - goto ProcessNextInst; - } - } else { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - SmallVector NewMIs; - if (PhysReg && - TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){ - MBB->insert(MII, NewMIs[0]); - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - Erased = true; - --NextMII; // backtrack to the unfolded instruction. - BackTracked = true; - goto ProcessNextInst; - } - } - } - - // If this reference is not a use, any previous store is now dead. - // Otherwise, the store to this stack slot is not dead anymore. - MachineInstr* DeadStore = MaybeDeadStores[SS]; - if (DeadStore) { - bool isDead = !(MR & VirtRegMap::isRef); - MachineInstr *NewStore = NULL; - if (MR & VirtRegMap::isModRef) { - unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS); - SmallVector NewMIs; - // We can reuse this physreg as long as we are allowed to clobber - // the value and there isn't an earlier def that has already clobbered - // the physreg. - if (PhysReg && - !ReusedOperands.isClobbered(PhysReg) && - Spills.canClobberPhysReg(PhysReg) && - !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable! - MachineOperand *KillOpnd = - DeadStore->findRegisterUseOperand(PhysReg, true); - // Note, if the store is storing a sub-register, it's possible the - // super-register is needed below. - if (KillOpnd && !KillOpnd->getSubReg() && - TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){ - MBB->insert(MII, NewMIs[0]); - NewStore = NewMIs[1]; - MBB->insert(MII, NewStore); - VRM->addSpillSlotUse(SS, NewStore); - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - Erased = true; - --NextMII; - --NextMII; // backtrack to the unfolded instruction. - BackTracked = true; - isDead = true; - ++NumSUnfold; - } - } - } - - if (isDead) { // Previous store is dead. - // If we get here, the store is dead, nuke it now. - DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore); - InvalidateKills(*DeadStore, TRI, RegKills, KillOps); - EraseInstr(DeadStore); - if (!NewStore) - ++NumDSE; - } - - MaybeDeadStores[SS] = NULL; - if (NewStore) { - // Treat this store as a spill merged into a copy. That makes the - // stack slot value available. - VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod); - goto ProcessNextInst; - } - } - - // If the spill slot value is available, and this is a new definition of - // the value, the value is not available anymore. - if (MR & VirtRegMap::isMod) { - // Notice that the value in this stack slot has been modified. - Spills.ModifyStackSlotOrReMat(SS); - - // If this is *just* a mod of the value, check to see if this is just a - // store to the spill slot (i.e. the spill got merged into the copy). If - // so, realize that the vreg is available now, and add the store to the - // MaybeDeadStore info. - int StackSlot; - if (!(MR & VirtRegMap::isRef)) { - if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) { - assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) && - "Src hasn't been allocated yet?"); - - if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot, - Spills, RegKills, KillOps, TRI)) { - NextMII = llvm::next(MII); - BackTracked = true; - goto ProcessNextInst; - } - - // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark - // this as a potentially dead store in case there is a subsequent - // store into the stack slot without a read from it. - MaybeDeadStores[StackSlot] = &MI; - - // If the stack slot value was previously available in some other - // register, change it now. Otherwise, make the register - // available in PhysReg. - Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg)); - } - } - } - } - - // Process all of the spilled defs. - SpilledMIRegs.clear(); - for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { - MachineOperand &MO = MI.getOperand(i); - if (!(MO.isReg() && MO.getReg() && MO.isDef())) - continue; - - unsigned VirtReg = MO.getReg(); - if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) { - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - // Also check if it's copying from an "undef", if so, we can't - // eliminate this or else the undef marker is lost and it will - // confuses the scavenger. This is extremely rare. - if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() && - MI.getNumOperands() == 2) { - ++NumDCE; - DEBUG(dbgs() << "Removing now-noop copy: " << MI); - SmallVector KillRegs; - InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs); - if (MO.isDead() && !KillRegs.empty()) { - // Source register or an implicit super/sub-register use is killed. - assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg())); - // Last def is now dead. - TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps); - } - EraseInstr(&MI); - Erased = true; - Spills.disallowClobberPhysReg(VirtReg); - goto ProcessNextInst; - } - - // If it's not a no-op copy, it clobbers the value in the destreg. - Spills.ClobberPhysReg(VirtReg); - ReusedOperands.markClobbered(VirtReg); - - // Check to see if this instruction is a load from a stack slot into - // a register. If so, this provides the stack slot value in the reg. - int FrameIdx; - if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) { - assert(DestReg == VirtReg && "Unknown load situation!"); - - // If it is a folded reference, then it's not safe to clobber. - bool Folded = FoldedSS.count(FrameIdx); - // Otherwise, if it wasn't available, remember that it is now! - Spills.addAvailable(FrameIdx, DestReg, !Folded); - goto ProcessNextInst; - } - - continue; - } - - unsigned SubIdx = MO.getSubReg(); - bool DoReMat = VRM->isReMaterialized(VirtReg); - if (DoReMat) - ReMatDefs.insert(&MI); - - // The only vregs left are stack slot definitions. - int StackSlot = VRM->getStackSlot(VirtReg); - const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); - - // If this def is part of a two-address operand, make sure to execute - // the store from the correct physical register. - unsigned PhysReg; - unsigned TiedOp; - if (MI.isRegTiedToUseOperand(i, &TiedOp)) { - PhysReg = MI.getOperand(TiedOp).getReg(); - if (SubIdx) { - unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI); - assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg && - "Can't find corresponding super-register!"); - PhysReg = SuperReg; - } - } else { - PhysReg = VRM->getPhys(VirtReg); - if (ReusedOperands.isClobbered(PhysReg)) { - // Another def has taken the assigned physreg. It must have been a - // use&def which got it due to reuse. Undo the reuse! - PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI, - Spills, MaybeDeadStores, RegKills, KillOps, *VRM); - } - } - - // If StackSlot is available in a register that also holds other stack - // slots, clobber those stack slots now. - Spills.ClobberSharingStackSlots(StackSlot); - - assert(PhysReg && "VR not assigned a physical register?"); - MRI->setPhysRegUsed(PhysReg); - unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg; - ReusedOperands.markClobbered(RReg); - MI.getOperand(i).setReg(RReg); - MI.getOperand(i).setSubReg(0); - - if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) { - MachineInstr *&LastStore = MaybeDeadStores[StackSlot]; - SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true, - LastStore, Spills, ReMatDefs, RegKills, KillOps); - NextMII = llvm::next(MII); - - // Check to see if this is a noop copy. If so, eliminate the - // instruction before considering the dest reg to be changed. - if (MI.isIdentityCopy()) { - ++NumDCE; - DEBUG(dbgs() << "Removing now-noop copy: " << MI); - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - Erased = true; - UpdateKills(*LastStore, TRI, RegKills, KillOps); - goto ProcessNextInst; - } - } - } - ProcessNextInst: - // Delete dead instructions without side effects. - if (!Erased && !BackTracked && isSafeToDelete(MI)) { - InvalidateKills(MI, TRI, RegKills, KillOps); - EraseInstr(&MI); - Erased = true; - } - if (!Erased) - DistanceMap.insert(std::make_pair(&MI, DistanceMap.size())); - if (!Erased && !BackTracked) { - for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II) - UpdateKills(*II, TRI, RegKills, KillOps); - } - MII = NextMII; - } - -} - -llvm::VirtRegRewriter* llvm::createVirtRegRewriter() { - switch (RewriterOpt) { - default: llvm_unreachable("Unreachable!"); - case local: - return new LocalRewriter(); - case trivial: - return new TrivialRewriter(); - } -} diff --git a/lib/CodeGen/VirtRegRewriter.h b/lib/CodeGen/VirtRegRewriter.h deleted file mode 100644 index 93474e0d7ff..00000000000 --- a/lib/CodeGen/VirtRegRewriter.h +++ /dev/null @@ -1,32 +0,0 @@ -//===-- llvm/CodeGen/VirtRegRewriter.h - VirtRegRewriter -*- C++ -*--------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_CODEGEN_VIRTREGREWRITER_H -#define LLVM_CODEGEN_VIRTREGREWRITER_H - -namespace llvm { - class LiveIntervals; - class MachineFunction; - class VirtRegMap; - - /// VirtRegRewriter interface: Implementations of this interface assign - /// spilled virtual registers to stack slots, rewriting the code. - struct VirtRegRewriter { - virtual ~VirtRegRewriter(); - virtual bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM, - LiveIntervals* LIs) = 0; - }; - - /// createVirtRegRewriter - Create an return a rewriter object, as specified - /// on the command line. - VirtRegRewriter* createVirtRegRewriter(); - -} - -#endif