This threads SectionName through the allocateCodeSection/allocateDataSection APIs, both in C++ and C land.

It's useful for the memory managers that are allocating a section to know what the name of the section is.  
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what 
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about 
what each allocation is for.  This allows clients that supply their own memory managers to do this.  
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM 
client.

This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM.  I'm assuming that 
it's safe to change the C++ API because that API is allowed to change.  I'm assuming that it's safe to change 
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory 
management C API).



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191804 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Filip Pizlo
2013-10-02 00:59:25 +00:00
parent 2b53089bd0
commit 6eb43d2956
16 changed files with 97 additions and 70 deletions

View File

@ -19,10 +19,10 @@ namespace {
TEST(MCJITMemoryManagerTest, BasicAllocations) {
OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1);
uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, true);
uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3);
uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, false);
uint8_t *code1 = MemMgr->allocateCodeSection(256, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(256, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(256, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(256, 0, 4, "", false);
EXPECT_NE((uint8_t*)0, code1);
EXPECT_NE((uint8_t*)0, code2);
@ -52,10 +52,10 @@ TEST(MCJITMemoryManagerTest, BasicAllocations) {
TEST(MCJITMemoryManagerTest, LargeAllocations) {
OwningPtr<SectionMemoryManager> MemMgr(new SectionMemoryManager());
uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1);
uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, true);
uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3);
uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, false);
uint8_t *code1 = MemMgr->allocateCodeSection(0x100000, 0, 1, "");
uint8_t *data1 = MemMgr->allocateDataSection(0x100000, 0, 2, "", true);
uint8_t *code2 = MemMgr->allocateCodeSection(0x100000, 0, 3, "");
uint8_t *data2 = MemMgr->allocateDataSection(0x100000, 0, 4, "", false);
EXPECT_NE((uint8_t*)0, code1);
EXPECT_NE((uint8_t*)0, code2);
@ -91,8 +91,8 @@ TEST(MCJITMemoryManagerTest, ManyAllocations) {
for (unsigned i = 0; i < 10000; ++i) {
const bool isReadOnly = i % 2 == 0;
code[i] = MemMgr->allocateCodeSection(32, 0, 1);
data[i] = MemMgr->allocateDataSection(32, 0, 2, isReadOnly);
code[i] = MemMgr->allocateCodeSection(32, 0, 1, "");
data[i] = MemMgr->allocateDataSection(32, 0, 2, "", isReadOnly);
for (unsigned j = 0; j < 32; j++) {
code[i][j] = 1 + (i % 254);
@ -130,8 +130,8 @@ TEST(MCJITMemoryManagerTest, ManyVariedAllocations) {
bool isReadOnly = i % 3 == 0;
unsigned Align = 8 << (i % 4);
code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i);
data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000,
code[i] = MemMgr->allocateCodeSection(CodeSize, Align, i, "");
data[i] = MemMgr->allocateDataSection(DataSize, Align, i + 10000, "",
isReadOnly);
for (unsigned j = 0; j < CodeSize; j++) {