diff --git a/lib/Transforms/Scalar/GVN.cpp b/lib/Transforms/Scalar/GVN.cpp index 42d7a939705..3478b310803 100644 --- a/lib/Transforms/Scalar/GVN.cpp +++ b/lib/Transforms/Scalar/GVN.cpp @@ -19,6 +19,7 @@ #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" +#include "llvm/IntrinsicInst.h" #include "llvm/Instructions.h" #include "llvm/Value.h" #include "llvm/ADT/BitVector.h" @@ -736,6 +737,7 @@ namespace { SmallVector& toErase); bool processNonLocalLoad(LoadInst* L, SmallVector& toErase); + bool processMemCpy(MemCpyInst* M, SmallVector& toErase); Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig, DenseMap &Phis, bool top_level = false); @@ -1017,6 +1019,84 @@ bool GVN::processLoad(LoadInst* L, return deletedLoad; } +/// processMemCpy - perform simplication of memcpy's. If we have memcpy A which +/// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be +/// a memcpy from X to Z (or potentially a memmove, depending on circumstances). +/// This allows later passes to remove the first memcpy altogether. +bool GVN::processMemCpy(MemCpyInst* M, + SmallVector& toErase) { + MemoryDependenceAnalysis& MD = getAnalysis(); + + // First, we have to check that the dependency is another memcpy + Instruction* dep = MD.getDependency(M); + if (dep == MemoryDependenceAnalysis::None || + dep == MemoryDependenceAnalysis::NonLocal || + !isa(dep)) + return false; + + // We can only transforms memcpy's where the dest of one is the source of the + // other + MemCpyInst* MDep = cast(dep); + if (M->getSource() != MDep->getDest()) + return false; + + // Second, the length of the memcpy's must be the same, or the preceeding one + // must be larger than the following one. + Value* DepLength = MDep->getLength(); + uint64_t CpySize = ~0UL; + uint64_t DepSize = ~0UL; + if (isa(DepLength)) { + if (isa(M->getLength())) { + if (cast(DepLength)->getLimitedValue() < + cast(M->getLength())->getLimitedValue()) { + return false; + } else { + CpySize = cast(M->getLength())->getLimitedValue(); + DepSize = cast(DepLength)->getLimitedValue(); + } + } else { + return false; + } + } else { + return false; + } + + // Finally, we have to make sure that the dest of the second does not + // alias the source of the first + AliasAnalysis& AA = getAnalysis(); + if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) != + AliasAnalysis::NoAlias) { + // If they don't, we can still make the transformation by first turning M + // into a memmove rather than a memcpy. + bool is32bit = M->getIntrinsicID() == Intrinsic::memcpy_i32; + Function* MemMoveFun = Intrinsic::getDeclaration( + M->getParent()->getParent()->getParent(), + is32bit ? Intrinsic::memmove_i32 : + Intrinsic::memmove_i64); + + std::vector args; + args.push_back(M->getRawDest()); + args.push_back(MDep->getRawSource()); + args.push_back(M->getLength()); + args.push_back(M->getAlignment()); + + new CallInst(MemMoveFun, args.begin(), args.end(), "", M); + + MD.removeInstruction(M); + toErase.push_back(M); + + return true; + } + + // If all checks passed, then we can transform these memcpy's + M->setSource(MDep->getRawSource()); + + // Reset dependence information for the memcpy + MD.removeInstruction(M); + + return true; +} + /// processInstruction - When calculating availability, handle an instruction /// by inserting it into the appropriate sets bool GVN::processInstruction(Instruction* I, @@ -1025,6 +1105,8 @@ bool GVN::processInstruction(Instruction* I, SmallVector& toErase) { if (LoadInst* L = dyn_cast(I)) { return processLoad(L, lastSeenLoad, toErase); + } else if (MemCpyInst* M = dyn_cast(I)) { + return processMemCpy(M, toErase); } unsigned num = VN.lookup_or_add(I); diff --git a/test/Transforms/GVN/memcpy.ll b/test/Transforms/GVN/memcpy.ll new file mode 100644 index 00000000000..a91e12d2ccd --- /dev/null +++ b/test/Transforms/GVN/memcpy.ll @@ -0,0 +1,22 @@ +; RUN: llvm-as < %s | opt -gvn -dse | llvm-dis | not grep {i8* %agg.result21, i8* %tmp219} + +target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128" +target triple = "i686-apple-darwin9" + +define void @ccosl({ x86_fp80, x86_fp80 }* sret %agg.result, x86_fp80 %z.0, x86_fp80 %z.1) nounwind { +entry: + %tmp2 = alloca { x86_fp80, x86_fp80 } ; <{ x86_fp80, x86_fp80 }*> [#uses=1] + %memtmp = alloca { x86_fp80, x86_fp80 }, align 16 ; <{ x86_fp80, x86_fp80 }*> [#uses=2] + %tmp5 = sub x86_fp80 0xK80000000000000000000, %z.1 ; [#uses=1] + call void @ccoshl( { x86_fp80, x86_fp80 }* sret %memtmp, x86_fp80 %tmp5, x86_fp80 %z.0 ) nounwind + %tmp219 = bitcast { x86_fp80, x86_fp80 }* %tmp2 to i8* ; [#uses=2] + %memtmp20 = bitcast { x86_fp80, x86_fp80 }* %memtmp to i8* ; [#uses=1] + call void @llvm.memcpy.i32( i8* %tmp219, i8* %memtmp20, i32 32, i32 16 ) + %agg.result21 = bitcast { x86_fp80, x86_fp80 }* %agg.result to i8* ; [#uses=1] + call void @llvm.memcpy.i32( i8* %agg.result21, i8* %tmp219, i32 32, i32 16 ) + ret void +} + +declare void @ccoshl({ x86_fp80, x86_fp80 }* sret , x86_fp80, x86_fp80) nounwind + +declare void @llvm.memcpy.i32(i8*, i8*, i32, i32) nounwind