mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-05 17:39:16 +00:00
Rename ConvergingScheduler to GenericScheduler.
This was an experimental scheduler a year ago. It's now used by several subtargets, both in-order and out-of-order, and it is about to be enabled by default for x86 and armv7. It will be the new GenericScheduler for subtargets that don't provide their own SchedulingStrategy. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191051 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
994c37fcb0
commit
70e0b047be
@ -155,7 +155,7 @@ DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
|
||||
|
||||
/// Forward declare the standard machine scheduler. This will be used as the
|
||||
/// default scheduler if the target does not set a default.
|
||||
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
|
||||
static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C);
|
||||
|
||||
|
||||
/// Decrement this iterator until reaching the top or a non-debug instr.
|
||||
@ -243,7 +243,7 @@ bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
|
||||
// Get the default scheduler set by the target.
|
||||
Ctor = MachineSchedRegistry::getDefault();
|
||||
if (!Ctor) {
|
||||
Ctor = createConvergingSched;
|
||||
Ctor = createGenericSched;
|
||||
MachineSchedRegistry::setDefault(Ctor);
|
||||
}
|
||||
}
|
||||
@ -1303,13 +1303,13 @@ void CopyConstrain::apply(ScheduleDAGMI *DAG) {
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
|
||||
// GenericScheduler - Implementation of the generic MachineSchedStrategy.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
namespace {
|
||||
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
|
||||
/// GenericScheduler shrinks the unscheduled zone using heuristics to balance
|
||||
/// the schedule.
|
||||
class ConvergingScheduler : public MachineSchedStrategy {
|
||||
class GenericScheduler : public MachineSchedStrategy {
|
||||
public:
|
||||
/// Represent the type of SchedCandidate found within a single queue.
|
||||
/// pickNodeBidirectional depends on these listed by decreasing priority.
|
||||
@ -1319,7 +1319,7 @@ public:
|
||||
TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
|
||||
|
||||
#ifndef NDEBUG
|
||||
static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
|
||||
static const char *getReasonStr(GenericScheduler::CandReason Reason);
|
||||
#endif
|
||||
|
||||
/// Policy for scheduling the next instruction in the candidate's zone.
|
||||
@ -1350,7 +1350,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
/// Store the state used by ConvergingScheduler heuristics, required for the
|
||||
/// Store the state used by GenericScheduler heuristics, required for the
|
||||
/// lifetime of one invocation of pickNode().
|
||||
struct SchedCandidate {
|
||||
CandPolicy Policy;
|
||||
@ -1514,7 +1514,7 @@ public:
|
||||
/// PendingFlag set.
|
||||
SchedBoundary(unsigned ID, const Twine &Name):
|
||||
DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
|
||||
Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
|
||||
Pending(ID << GenericScheduler::LogMaxQID, Name+".P"),
|
||||
HazardRec(0) {
|
||||
reset();
|
||||
}
|
||||
@ -1525,7 +1525,7 @@ public:
|
||||
SchedRemainder *rem);
|
||||
|
||||
bool isTop() const {
|
||||
return Available.getID() == ConvergingScheduler::TopQID;
|
||||
return Available.getID() == GenericScheduler::TopQID;
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -1616,7 +1616,7 @@ public:
|
||||
LogMaxQID = 2
|
||||
};
|
||||
|
||||
ConvergingScheduler(const MachineSchedContext *C):
|
||||
GenericScheduler(const MachineSchedContext *C):
|
||||
Context(C), DAG(0), SchedModel(0), TRI(0),
|
||||
Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
|
||||
|
||||
@ -1661,7 +1661,7 @@ protected:
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void ConvergingScheduler::SchedRemainder::
|
||||
void GenericScheduler::SchedRemainder::
|
||||
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
|
||||
reset();
|
||||
if (!SchedModel->hasInstrSchedModel())
|
||||
@ -1682,7 +1682,7 @@ init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
|
||||
}
|
||||
}
|
||||
|
||||
void ConvergingScheduler::SchedBoundary::
|
||||
void GenericScheduler::SchedBoundary::
|
||||
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
|
||||
reset();
|
||||
DAG = dag;
|
||||
@ -1693,7 +1693,7 @@ init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
|
||||
}
|
||||
|
||||
/// Initialize the per-region scheduling policy.
|
||||
void ConvergingScheduler::initPolicy(MachineBasicBlock::iterator Begin,
|
||||
void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
|
||||
MachineBasicBlock::iterator End,
|
||||
unsigned NumRegionInstrs) {
|
||||
const TargetMachine &TM = Context->MF->getTarget();
|
||||
@ -1734,7 +1734,7 @@ void ConvergingScheduler::initPolicy(MachineBasicBlock::iterator Begin,
|
||||
}
|
||||
}
|
||||
|
||||
void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
|
||||
void GenericScheduler::initialize(ScheduleDAGMI *dag) {
|
||||
DAG = dag;
|
||||
SchedModel = DAG->getSchedModel();
|
||||
TRI = DAG->TRI;
|
||||
@ -1759,7 +1759,7 @@ void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
|
||||
}
|
||||
}
|
||||
|
||||
void ConvergingScheduler::releaseTopNode(SUnit *SU) {
|
||||
void GenericScheduler::releaseTopNode(SUnit *SU) {
|
||||
if (SU->isScheduled)
|
||||
return;
|
||||
|
||||
@ -1778,7 +1778,7 @@ void ConvergingScheduler::releaseTopNode(SUnit *SU) {
|
||||
Top.releaseNode(SU, SU->TopReadyCycle);
|
||||
}
|
||||
|
||||
void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
|
||||
void GenericScheduler::releaseBottomNode(SUnit *SU) {
|
||||
if (SU->isScheduled)
|
||||
return;
|
||||
|
||||
@ -1808,7 +1808,7 @@ void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
|
||||
/// InFlightResources = InFlightIterations * LoopResources
|
||||
///
|
||||
/// TODO: Check execution resources in addition to IssueCount.
|
||||
void ConvergingScheduler::checkAcyclicLatency() {
|
||||
void GenericScheduler::checkAcyclicLatency() {
|
||||
if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
|
||||
return;
|
||||
|
||||
@ -1836,7 +1836,7 @@ void ConvergingScheduler::checkAcyclicLatency() {
|
||||
dbgs() << " ACYCLIC LATENCY LIMIT\n");
|
||||
}
|
||||
|
||||
void ConvergingScheduler::registerRoots() {
|
||||
void GenericScheduler::registerRoots() {
|
||||
Rem.CriticalPath = DAG->ExitSU.getDepth();
|
||||
|
||||
// Some roots may not feed into ExitSU. Check all of them in case.
|
||||
@ -1866,7 +1866,7 @@ void ConvergingScheduler::registerRoots() {
|
||||
/// can dispatch per cycle.
|
||||
///
|
||||
/// TODO: Also check whether the SU must start a new group.
|
||||
bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
|
||||
bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) {
|
||||
if (HazardRec->isEnabled())
|
||||
return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
|
||||
|
||||
@ -1880,7 +1880,7 @@ bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
|
||||
}
|
||||
|
||||
// Find the unscheduled node in ReadySUs with the highest latency.
|
||||
unsigned ConvergingScheduler::SchedBoundary::
|
||||
unsigned GenericScheduler::SchedBoundary::
|
||||
findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
|
||||
SUnit *LateSU = 0;
|
||||
unsigned RemLatency = 0;
|
||||
@ -1902,7 +1902,7 @@ findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
|
||||
// Count resources in this zone and the remaining unscheduled
|
||||
// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
|
||||
// resource index, or zero if the zone is issue limited.
|
||||
unsigned ConvergingScheduler::SchedBoundary::
|
||||
unsigned GenericScheduler::SchedBoundary::
|
||||
getOtherResourceCount(unsigned &OtherCritIdx) {
|
||||
OtherCritIdx = 0;
|
||||
if (!SchedModel->hasInstrSchedModel())
|
||||
@ -1930,7 +1930,7 @@ getOtherResourceCount(unsigned &OtherCritIdx) {
|
||||
|
||||
/// Set the CandPolicy for this zone given the current resources and latencies
|
||||
/// inside and outside the zone.
|
||||
void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
|
||||
void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
|
||||
SchedBoundary &OtherZone) {
|
||||
// Now that potential stalls have been considered, apply preemptive heuristics
|
||||
// based on the the total latency and resources inside and outside this
|
||||
@ -1989,7 +1989,7 @@ void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
|
||||
Policy.DemandResIdx = OtherCritIdx;
|
||||
}
|
||||
|
||||
void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
|
||||
void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU,
|
||||
unsigned ReadyCycle) {
|
||||
if (ReadyCycle < MinReadyCycle)
|
||||
MinReadyCycle = ReadyCycle;
|
||||
@ -2007,7 +2007,7 @@ void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
|
||||
}
|
||||
|
||||
/// Move the boundary of scheduled code by one cycle.
|
||||
void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
|
||||
void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
|
||||
if (SchedModel->getMicroOpBufferSize() == 0) {
|
||||
assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
|
||||
if (MinReadyCycle > NextCycle)
|
||||
@ -2045,7 +2045,7 @@ void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
|
||||
DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
|
||||
}
|
||||
|
||||
void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
|
||||
void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
|
||||
unsigned Count) {
|
||||
ExecutedResCounts[PIdx] += Count;
|
||||
if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
|
||||
@ -2059,7 +2059,7 @@ void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
|
||||
///
|
||||
/// \return the next cycle at which the instruction may execute without
|
||||
/// oversubscribing resources.
|
||||
unsigned ConvergingScheduler::SchedBoundary::
|
||||
unsigned GenericScheduler::SchedBoundary::
|
||||
countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
|
||||
unsigned Factor = SchedModel->getResourceFactor(PIdx);
|
||||
unsigned Count = Factor * Cycles;
|
||||
@ -2084,7 +2084,7 @@ countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
|
||||
}
|
||||
|
||||
/// Move the boundary of scheduled code by one SUnit.
|
||||
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
|
||||
void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) {
|
||||
// Update the reservation table.
|
||||
if (HazardRec->isEnabled()) {
|
||||
if (!isTop() && SU->isCall) {
|
||||
@ -2188,7 +2188,7 @@ void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
|
||||
|
||||
/// Release pending ready nodes in to the available queue. This makes them
|
||||
/// visible to heuristics.
|
||||
void ConvergingScheduler::SchedBoundary::releasePending() {
|
||||
void GenericScheduler::SchedBoundary::releasePending() {
|
||||
// If the available queue is empty, it is safe to reset MinReadyCycle.
|
||||
if (Available.empty())
|
||||
MinReadyCycle = UINT_MAX;
|
||||
@ -2218,7 +2218,7 @@ void ConvergingScheduler::SchedBoundary::releasePending() {
|
||||
}
|
||||
|
||||
/// Remove SU from the ready set for this boundary.
|
||||
void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
|
||||
void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) {
|
||||
if (Available.isInQueue(SU))
|
||||
Available.remove(Available.find(SU));
|
||||
else {
|
||||
@ -2230,7 +2230,7 @@ void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
|
||||
/// If this queue only has one ready candidate, return it. As a side effect,
|
||||
/// defer any nodes that now hit a hazard, and advance the cycle until at least
|
||||
/// one node is ready. If multiple instructions are ready, return NULL.
|
||||
SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
|
||||
SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() {
|
||||
if (CheckPending)
|
||||
releasePending();
|
||||
|
||||
@ -2259,7 +2259,7 @@ SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
|
||||
#ifndef NDEBUG
|
||||
// This is useful information to dump after bumpNode.
|
||||
// Note that the Queue contents are more useful before pickNodeFromQueue.
|
||||
void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
|
||||
void GenericScheduler::SchedBoundary::dumpScheduledState() {
|
||||
unsigned ResFactor;
|
||||
unsigned ResCount;
|
||||
if (ZoneCritResIdx) {
|
||||
@ -2282,7 +2282,7 @@ void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
|
||||
}
|
||||
#endif
|
||||
|
||||
void ConvergingScheduler::SchedCandidate::
|
||||
void GenericScheduler::SchedCandidate::
|
||||
initResourceDelta(const ScheduleDAGMI *DAG,
|
||||
const TargetSchedModel *SchedModel) {
|
||||
if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
|
||||
@ -2302,9 +2302,9 @@ initResourceDelta(const ScheduleDAGMI *DAG,
|
||||
|
||||
/// Return true if this heuristic determines order.
|
||||
static bool tryLess(int TryVal, int CandVal,
|
||||
ConvergingScheduler::SchedCandidate &TryCand,
|
||||
ConvergingScheduler::SchedCandidate &Cand,
|
||||
ConvergingScheduler::CandReason Reason) {
|
||||
GenericScheduler::SchedCandidate &TryCand,
|
||||
GenericScheduler::SchedCandidate &Cand,
|
||||
GenericScheduler::CandReason Reason) {
|
||||
if (TryVal < CandVal) {
|
||||
TryCand.Reason = Reason;
|
||||
return true;
|
||||
@ -2319,9 +2319,9 @@ static bool tryLess(int TryVal, int CandVal,
|
||||
}
|
||||
|
||||
static bool tryGreater(int TryVal, int CandVal,
|
||||
ConvergingScheduler::SchedCandidate &TryCand,
|
||||
ConvergingScheduler::SchedCandidate &Cand,
|
||||
ConvergingScheduler::CandReason Reason) {
|
||||
GenericScheduler::SchedCandidate &TryCand,
|
||||
GenericScheduler::SchedCandidate &Cand,
|
||||
GenericScheduler::CandReason Reason) {
|
||||
if (TryVal > CandVal) {
|
||||
TryCand.Reason = Reason;
|
||||
return true;
|
||||
@ -2337,9 +2337,9 @@ static bool tryGreater(int TryVal, int CandVal,
|
||||
|
||||
static bool tryPressure(const PressureChange &TryP,
|
||||
const PressureChange &CandP,
|
||||
ConvergingScheduler::SchedCandidate &TryCand,
|
||||
ConvergingScheduler::SchedCandidate &Cand,
|
||||
ConvergingScheduler::CandReason Reason) {
|
||||
GenericScheduler::SchedCandidate &TryCand,
|
||||
GenericScheduler::SchedCandidate &Cand,
|
||||
GenericScheduler::CandReason Reason) {
|
||||
int TryRank = TryP.getPSetOrMax();
|
||||
int CandRank = CandP.getPSetOrMax();
|
||||
// If both candidates affect the same set, go with the smallest increase.
|
||||
@ -2391,27 +2391,27 @@ static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
|
||||
ConvergingScheduler::SchedCandidate &Cand,
|
||||
ConvergingScheduler::SchedBoundary &Zone) {
|
||||
static bool tryLatency(GenericScheduler::SchedCandidate &TryCand,
|
||||
GenericScheduler::SchedCandidate &Cand,
|
||||
GenericScheduler::SchedBoundary &Zone) {
|
||||
if (Zone.isTop()) {
|
||||
if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
|
||||
if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
|
||||
TryCand, Cand, ConvergingScheduler::TopDepthReduce))
|
||||
TryCand, Cand, GenericScheduler::TopDepthReduce))
|
||||
return true;
|
||||
}
|
||||
if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
|
||||
TryCand, Cand, ConvergingScheduler::TopPathReduce))
|
||||
TryCand, Cand, GenericScheduler::TopPathReduce))
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
|
||||
if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
|
||||
TryCand, Cand, ConvergingScheduler::BotHeightReduce))
|
||||
TryCand, Cand, GenericScheduler::BotHeightReduce))
|
||||
return true;
|
||||
}
|
||||
if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
|
||||
TryCand, Cand, ConvergingScheduler::BotPathReduce))
|
||||
TryCand, Cand, GenericScheduler::BotPathReduce))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -2428,7 +2428,7 @@ static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
|
||||
/// \param Zone describes the scheduled zone that we are extending.
|
||||
/// \param RPTracker describes reg pressure within the scheduled zone.
|
||||
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
|
||||
void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
|
||||
void GenericScheduler::tryCandidate(SchedCandidate &Cand,
|
||||
SchedCandidate &TryCand,
|
||||
SchedBoundary &Zone,
|
||||
const RegPressureTracker &RPTracker,
|
||||
@ -2554,8 +2554,8 @@ void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
|
||||
}
|
||||
|
||||
#ifndef NDEBUG
|
||||
const char *ConvergingScheduler::getReasonStr(
|
||||
ConvergingScheduler::CandReason Reason) {
|
||||
const char *GenericScheduler::getReasonStr(
|
||||
GenericScheduler::CandReason Reason) {
|
||||
switch (Reason) {
|
||||
case NoCand: return "NOCAND ";
|
||||
case PhysRegCopy: return "PREG-COPY";
|
||||
@ -2576,7 +2576,7 @@ const char *ConvergingScheduler::getReasonStr(
|
||||
llvm_unreachable("Unknown reason!");
|
||||
}
|
||||
|
||||
void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
|
||||
void GenericScheduler::traceCandidate(const SchedCandidate &Cand) {
|
||||
PressureChange P;
|
||||
unsigned ResIdx = 0;
|
||||
unsigned Latency = 0;
|
||||
@ -2634,7 +2634,7 @@ void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
|
||||
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
|
||||
/// DAG building. To adjust for the current scheduling location we need to
|
||||
/// maintain the number of vreg uses remaining to be top-scheduled.
|
||||
void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
|
||||
void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
|
||||
const RegPressureTracker &RPTracker,
|
||||
SchedCandidate &Cand) {
|
||||
ReadyQueue &Q = Zone.Available;
|
||||
@ -2659,14 +2659,14 @@ void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
|
||||
}
|
||||
}
|
||||
|
||||
static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
|
||||
static void tracePick(const GenericScheduler::SchedCandidate &Cand,
|
||||
bool IsTop) {
|
||||
DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
|
||||
<< ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
|
||||
<< GenericScheduler::getReasonStr(Cand.Reason) << '\n');
|
||||
}
|
||||
|
||||
/// Pick the best candidate node from either the top or bottom queue.
|
||||
SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
|
||||
SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
|
||||
// Schedule as far as possible in the direction of no choice. This is most
|
||||
// efficient, but also provides the best heuristics for CriticalPSets.
|
||||
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
||||
@ -2721,7 +2721,7 @@ SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
|
||||
}
|
||||
|
||||
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
|
||||
SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
|
||||
SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
|
||||
if (DAG->top() == DAG->bottom()) {
|
||||
assert(Top.Available.empty() && Top.Pending.empty() &&
|
||||
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
||||
@ -2767,7 +2767,7 @@ SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
|
||||
return SU;
|
||||
}
|
||||
|
||||
void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
|
||||
void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
|
||||
|
||||
MachineBasicBlock::iterator InsertPos = SU->getInstr();
|
||||
if (!isTop)
|
||||
@ -2798,7 +2798,7 @@ void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
|
||||
///
|
||||
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
|
||||
/// them here. See comments in biasPhysRegCopy.
|
||||
void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
|
||||
void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
|
||||
if (IsTopNode) {
|
||||
SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
|
||||
Top.bumpNode(SU);
|
||||
@ -2815,8 +2815,8 @@ void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
|
||||
|
||||
/// Create the standard converging machine scheduler. This will be used as the
|
||||
/// default scheduler if the target does not set a default.
|
||||
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
|
||||
ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler(C));
|
||||
static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) {
|
||||
ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C));
|
||||
// Register DAG post-processors.
|
||||
//
|
||||
// FIXME: extend the mutation API to allow earlier mutations to instantiate
|
||||
@ -2830,8 +2830,8 @@ static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
|
||||
return DAG;
|
||||
}
|
||||
static MachineSchedRegistry
|
||||
ConvergingSchedRegistry("converge", "Standard converging scheduler.",
|
||||
createConvergingSched);
|
||||
GenericSchedRegistry("converge", "Standard converging scheduler.",
|
||||
createGenericSched);
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ILP Scheduler. Currently for experimental analysis of heuristics.
|
||||
|
Loading…
x
Reference in New Issue
Block a user