mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
Eliminate a lot of out-of-date comments, and all of the wierd overloaded
operator constant folding stuff. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10803 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
4a0ecc8c0c
commit
731ba7f032
@ -7,35 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the declarations of some cool operators that allow you
|
||||
// to do natural things with constant pool values.
|
||||
//
|
||||
// Unfortunately we can't overload operators on pointer types (like this:)
|
||||
//
|
||||
// inline bool operator==(const Constant *V1, const Constant *V2)
|
||||
//
|
||||
// so we must make due with references, even though it leads to some butt ugly
|
||||
// looking code downstream. *sigh* (ex: Constant *Result = *V1 + *v2; )
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// WARNING: These operators may return a null object if I don't know how to
|
||||
// perform the specified operation on the specified constant types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation notes:
|
||||
// This library is implemented this way for a reason: In most cases, we do
|
||||
// not want to have to link the constant mucking code into an executable.
|
||||
// We do, however want to tie some of this into the main type system, as an
|
||||
// optional component. By using a mutable cache member in the Type class, we
|
||||
// get exactly the kind of behavior we want.
|
||||
//
|
||||
// In the end, we get performance almost exactly the same as having a virtual
|
||||
// function dispatch, but we don't have to put our virtual functions into the
|
||||
// "Type" class, and we can implement functionality with templates. Good deal.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CONSTANTHANDLING_H
|
||||
#define LLVM_CONSTANTHANDLING_H
|
||||
@ -47,10 +22,6 @@ namespace llvm {
|
||||
|
||||
class PointerType;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement all other operators indirectly through TypeRules system
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct ConstRules {
|
||||
ConstRules() {}
|
||||
|
||||
@ -108,116 +79,12 @@ struct ConstRules {
|
||||
// ConstRules::get - Return an instance of ConstRules for the specified
|
||||
// constant operands.
|
||||
//
|
||||
static ConstRules &get(const Constant &V1, const Constant &V2);
|
||||
static ConstRules &get(const Constant *V1, const Constant *V2);
|
||||
private:
|
||||
ConstRules(const ConstRules &); // Do not implement
|
||||
ConstRules &operator=(const ConstRules &); // Do not implement
|
||||
};
|
||||
|
||||
// Unary operators...
|
||||
inline Constant *operator~(const Constant &V) {
|
||||
assert(V.getType()->isIntegral() && "Cannot invert non-integral constant!");
|
||||
return ConstRules::get(V, V).op_xor(&V,
|
||||
ConstantInt::getAllOnesValue(V.getType()));
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V) {
|
||||
return ConstRules::get(V, V).sub(Constant::getNullValue(V.getType()), &V);
|
||||
}
|
||||
|
||||
// Standard binary operators...
|
||||
inline Constant *operator+(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).add(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).sub(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator*(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).mul(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator/(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).div(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator%(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).rem(&V1, &V2);
|
||||
}
|
||||
|
||||
// Logical Operators...
|
||||
inline Constant *operator&(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_and(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator|(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_or(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator^(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_xor(&V1, &V2);
|
||||
}
|
||||
|
||||
// Shift Instructions...
|
||||
inline Constant *operator<<(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shl(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator>>(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shr(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).lessthan(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator==(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).equalto(&V1, &V2);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement 'derived' operators based on what we already have...
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
inline ConstantBool *operator!=(const Constant &V1, const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 == V2))
|
||||
return V->inverted(); // !(V1 == V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
return V2 < V1;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 < V2))
|
||||
return V->inverted(); // !(V1 < V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 > V2))
|
||||
return V->inverted(); // !(V1 > V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement higher level instruction folding type instructions
|
||||
@ -227,8 +94,6 @@ inline ConstantBool *operator<=(const Constant &V1,
|
||||
Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
|
||||
Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldShiftInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldGetElementPtr(const Constant *C,
|
||||
const std::vector<Constant*> &IdxList);
|
||||
|
||||
|
@ -7,35 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the declarations of some cool operators that allow you
|
||||
// to do natural things with constant pool values.
|
||||
//
|
||||
// Unfortunately we can't overload operators on pointer types (like this:)
|
||||
//
|
||||
// inline bool operator==(const Constant *V1, const Constant *V2)
|
||||
//
|
||||
// so we must make due with references, even though it leads to some butt ugly
|
||||
// looking code downstream. *sigh* (ex: Constant *Result = *V1 + *v2; )
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// WARNING: These operators may return a null object if I don't know how to
|
||||
// perform the specified operation on the specified constant types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation notes:
|
||||
// This library is implemented this way for a reason: In most cases, we do
|
||||
// not want to have to link the constant mucking code into an executable.
|
||||
// We do, however want to tie some of this into the main type system, as an
|
||||
// optional component. By using a mutable cache member in the Type class, we
|
||||
// get exactly the kind of behavior we want.
|
||||
//
|
||||
// In the end, we get performance almost exactly the same as having a virtual
|
||||
// function dispatch, but we don't have to put our virtual functions into the
|
||||
// "Type" class, and we can implement functionality with templates. Good deal.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CONSTANTHANDLING_H
|
||||
#define LLVM_CONSTANTHANDLING_H
|
||||
@ -47,10 +22,6 @@ namespace llvm {
|
||||
|
||||
class PointerType;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement all other operators indirectly through TypeRules system
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct ConstRules {
|
||||
ConstRules() {}
|
||||
|
||||
@ -108,116 +79,12 @@ struct ConstRules {
|
||||
// ConstRules::get - Return an instance of ConstRules for the specified
|
||||
// constant operands.
|
||||
//
|
||||
static ConstRules &get(const Constant &V1, const Constant &V2);
|
||||
static ConstRules &get(const Constant *V1, const Constant *V2);
|
||||
private:
|
||||
ConstRules(const ConstRules &); // Do not implement
|
||||
ConstRules &operator=(const ConstRules &); // Do not implement
|
||||
};
|
||||
|
||||
// Unary operators...
|
||||
inline Constant *operator~(const Constant &V) {
|
||||
assert(V.getType()->isIntegral() && "Cannot invert non-integral constant!");
|
||||
return ConstRules::get(V, V).op_xor(&V,
|
||||
ConstantInt::getAllOnesValue(V.getType()));
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V) {
|
||||
return ConstRules::get(V, V).sub(Constant::getNullValue(V.getType()), &V);
|
||||
}
|
||||
|
||||
// Standard binary operators...
|
||||
inline Constant *operator+(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).add(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).sub(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator*(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).mul(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator/(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).div(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator%(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).rem(&V1, &V2);
|
||||
}
|
||||
|
||||
// Logical Operators...
|
||||
inline Constant *operator&(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_and(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator|(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_or(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator^(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_xor(&V1, &V2);
|
||||
}
|
||||
|
||||
// Shift Instructions...
|
||||
inline Constant *operator<<(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shl(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator>>(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shr(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).lessthan(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator==(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).equalto(&V1, &V2);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement 'derived' operators based on what we already have...
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
inline ConstantBool *operator!=(const Constant &V1, const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 == V2))
|
||||
return V->inverted(); // !(V1 == V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
return V2 < V1;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 < V2))
|
||||
return V->inverted(); // !(V1 < V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 > V2))
|
||||
return V->inverted(); // !(V1 > V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement higher level instruction folding type instructions
|
||||
@ -227,8 +94,6 @@ inline ConstantBool *operator<=(const Constant &V1,
|
||||
Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
|
||||
Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldShiftInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldGetElementPtr(const Constant *C,
|
||||
const std::vector<Constant*> &IdxList);
|
||||
|
||||
|
@ -7,35 +7,10 @@
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file contains the declarations of some cool operators that allow you
|
||||
// to do natural things with constant pool values.
|
||||
//
|
||||
// Unfortunately we can't overload operators on pointer types (like this:)
|
||||
//
|
||||
// inline bool operator==(const Constant *V1, const Constant *V2)
|
||||
//
|
||||
// so we must make due with references, even though it leads to some butt ugly
|
||||
// looking code downstream. *sigh* (ex: Constant *Result = *V1 + *v2; )
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// WARNING: These operators may return a null object if I don't know how to
|
||||
// perform the specified operation on the specified constant types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Implementation notes:
|
||||
// This library is implemented this way for a reason: In most cases, we do
|
||||
// not want to have to link the constant mucking code into an executable.
|
||||
// We do, however want to tie some of this into the main type system, as an
|
||||
// optional component. By using a mutable cache member in the Type class, we
|
||||
// get exactly the kind of behavior we want.
|
||||
//
|
||||
// In the end, we get performance almost exactly the same as having a virtual
|
||||
// function dispatch, but we don't have to put our virtual functions into the
|
||||
// "Type" class, and we can implement functionality with templates. Good deal.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CONSTANTHANDLING_H
|
||||
#define LLVM_CONSTANTHANDLING_H
|
||||
@ -47,10 +22,6 @@ namespace llvm {
|
||||
|
||||
class PointerType;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement all other operators indirectly through TypeRules system
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
struct ConstRules {
|
||||
ConstRules() {}
|
||||
|
||||
@ -108,116 +79,12 @@ struct ConstRules {
|
||||
// ConstRules::get - Return an instance of ConstRules for the specified
|
||||
// constant operands.
|
||||
//
|
||||
static ConstRules &get(const Constant &V1, const Constant &V2);
|
||||
static ConstRules &get(const Constant *V1, const Constant *V2);
|
||||
private:
|
||||
ConstRules(const ConstRules &); // Do not implement
|
||||
ConstRules &operator=(const ConstRules &); // Do not implement
|
||||
};
|
||||
|
||||
// Unary operators...
|
||||
inline Constant *operator~(const Constant &V) {
|
||||
assert(V.getType()->isIntegral() && "Cannot invert non-integral constant!");
|
||||
return ConstRules::get(V, V).op_xor(&V,
|
||||
ConstantInt::getAllOnesValue(V.getType()));
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V) {
|
||||
return ConstRules::get(V, V).sub(Constant::getNullValue(V.getType()), &V);
|
||||
}
|
||||
|
||||
// Standard binary operators...
|
||||
inline Constant *operator+(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).add(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator-(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).sub(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator*(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).mul(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator/(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).div(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator%(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).rem(&V1, &V2);
|
||||
}
|
||||
|
||||
// Logical Operators...
|
||||
inline Constant *operator&(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_and(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator|(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_or(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator^(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).op_xor(&V1, &V2);
|
||||
}
|
||||
|
||||
// Shift Instructions...
|
||||
inline Constant *operator<<(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shl(&V1, &V2);
|
||||
}
|
||||
|
||||
inline Constant *operator>>(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType()->isInteger() && V2.getType() == Type::UByteTy);
|
||||
return ConstRules::get(V1, V2).shr(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).lessthan(&V1, &V2);
|
||||
}
|
||||
|
||||
inline ConstantBool *operator==(const Constant &V1, const Constant &V2) {
|
||||
assert(V1.getType() == V2.getType() && "Constant types must be identical!");
|
||||
return ConstRules::get(V1, V2).equalto(&V1, &V2);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement 'derived' operators based on what we already have...
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
inline ConstantBool *operator!=(const Constant &V1, const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 == V2))
|
||||
return V->inverted(); // !(V1 == V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
return V2 < V1;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator>=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 < V2))
|
||||
return V->inverted(); // !(V1 < V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline ConstantBool *operator<=(const Constant &V1,
|
||||
const Constant &V2) {
|
||||
if (ConstantBool *V = (V1 > V2))
|
||||
return V->inverted(); // !(V1 > V2)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Implement higher level instruction folding type instructions
|
||||
@ -227,8 +94,6 @@ inline ConstantBool *operator<=(const Constant &V1,
|
||||
Constant *ConstantFoldCastInstruction(const Constant *V, const Type *DestTy);
|
||||
Constant *ConstantFoldBinaryInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldShiftInstruction(unsigned Opcode, const Constant *V1,
|
||||
const Constant *V2);
|
||||
Constant *ConstantFoldGetElementPtr(const Constant *C,
|
||||
const std::vector<Constant*> &IdxList);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user