Refactor libcall code a bit. Initial implementation of expanding int -> FP

operations for 64-bit integers.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19724 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2005-01-21 06:05:23 +00:00
parent fb01550ace
commit 77e77a6aa0

View File

@ -119,6 +119,10 @@ private:
void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi); void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
SDOperand PromoteOp(SDOperand O); SDOperand PromoteOp(SDOperand O);
SDOperand ExpandLibCall(const char *Name, SDNode *Node,
SDOperand &Hi);
SDOperand ExpandIntToFP(bool isSigned, MVT::ValueType DestTy,
SDOperand Source);
bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt, bool ExpandShift(unsigned Opc, SDOperand Op, SDOperand Amt,
SDOperand &Lo, SDOperand &Hi); SDOperand &Lo, SDOperand &Hi);
void ExpandAddSub(bool isAdd, SDOperand Op, SDOperand Amt, void ExpandAddSub(bool isAdd, SDOperand Op, SDOperand Amt,
@ -802,10 +806,13 @@ SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
break; break;
case Expand: case Expand:
assert(Node->getOpcode() != ISD::SINT_TO_FP && if (Node->getOpcode() == ISD::SINT_TO_FP ||
Node->getOpcode() != ISD::UINT_TO_FP && Node->getOpcode() == ISD::UINT_TO_FP) {
"Cannot lower Xint_to_fp to a call yet!"); Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP,
Node->getValueType(0), Node->getOperand(0));
Result = LegalizeOp(Result);
break;
}
// In the expand case, we must be dealing with a truncate, because // In the expand case, we must be dealing with a truncate, because
// otherwise the result would be larger than the source. // otherwise the result would be larger than the source.
assert(Node->getOpcode() == ISD::TRUNCATE && assert(Node->getOpcode() == ISD::TRUNCATE &&
@ -1043,6 +1050,8 @@ SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) {
switch (getTypeAction(Node->getOperand(0).getValueType())) { switch (getTypeAction(Node->getOperand(0).getValueType())) {
case Legal: case Legal:
Result = LegalizeOp(Node->getOperand(0)); Result = LegalizeOp(Node->getOperand(0));
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Result);
break; break;
case Promote: case Promote:
@ -1053,12 +1062,19 @@ SDOperand SelectionDAGLegalize::PromoteOp(SDOperand Op) {
else else
Result = DAG.getNode(ISD::ZERO_EXTEND_INREG, Result.getValueType(), Result = DAG.getNode(ISD::ZERO_EXTEND_INREG, Result.getValueType(),
Result, Node->getOperand(0).getValueType()); Result, Node->getOperand(0).getValueType());
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Result);
break; break;
case Expand: case Expand:
assert(0 && "Unimplemented"); Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT,
Node->getOperand(0));
Result = LegalizeOp(Result);
// Round if we cannot tolerate excess precision.
if (NoExcessFPPrecision)
Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, VT);
break;
} }
// No extra round required here.
Result = DAG.getNode(Node->getOpcode(), NVT, Result);
break; break;
case ISD::FP_TO_SINT: case ISD::FP_TO_SINT:
@ -1263,15 +1279,21 @@ bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt,
Hi = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1); Hi = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1);
Lo = DAG.getNode(ISD::SELECT, NVT, Cond, DAG.getConstant(0, NVT), T2); Lo = DAG.getNode(ISD::SELECT, NVT, Cond, DAG.getConstant(0, NVT), T2);
} else { } else {
SDOperand HiLoPart = DAG.getNode(ISD::SELECT, NVT,
DAG.getSetCC(ISD::SETEQ,
TLI.getSetCCResultTy(), NAmt,
DAG.getConstant(32, ShTy)),
DAG.getConstant(0, NVT),
DAG.getNode(ISD::SHL, NVT, InH, NAmt));
SDOperand T1 = DAG.getNode(ISD::OR, NVT,// T1 = (Hi << NAmt) | (Lo >> Amt) SDOperand T1 = DAG.getNode(ISD::OR, NVT,// T1 = (Hi << NAmt) | (Lo >> Amt)
DAG.getNode(ISD::SHL, NVT, InH, NAmt), HiLoPart,
DAG.getNode(ISD::SRL, NVT, InL, ShAmt)); DAG.getNode(ISD::SRL, NVT, InL, ShAmt));
bool isSign = Opc == ISD::SRA;
SDOperand T2 = DAG.getNode(Opc, NVT, InH, ShAmt); // T2 = InH >> ShAmt&31 SDOperand T2 = DAG.getNode(Opc, NVT, InH, ShAmt); // T2 = InH >> ShAmt&31
SDOperand HiPart; SDOperand HiPart;
if (isSign) if (Opc == ISD::SRA)
HiPart = DAG.getNode(Opc, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); HiPart = DAG.getNode(ISD::SRA, NVT, InH,
DAG.getConstant(NVTBits-1, ShTy));
else else
HiPart = DAG.getConstant(0, NVT); HiPart = DAG.getConstant(0, NVT);
Lo = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1); Lo = DAG.getNode(ISD::SELECT, NVT, Cond, T2, T1);
@ -1281,6 +1303,78 @@ bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDOperand Op,SDOperand Amt,
} }
// ExpandLibCall - Expand a node into a call to a libcall. If the result value
// does not fit into a register, return the lo part and set the hi part to the
// by-reg argument. If it does fit into a single register, return the result
// and leave the Hi part unset.
SDOperand SelectionDAGLegalize::ExpandLibCall(const char *Name, SDNode *Node,
SDOperand &Hi) {
TargetLowering::ArgListTy Args;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
MVT::ValueType ArgVT = Node->getOperand(i).getValueType();
const Type *ArgTy = MVT::getTypeForValueType(ArgVT);
Args.push_back(std::make_pair(Node->getOperand(i), ArgTy));
}
SDOperand Callee = DAG.getExternalSymbol(Name, TLI.getPointerTy());
// We don't care about token chains for libcalls. We just use the entry
// node as our input and ignore the output chain. This allows us to place
// calls wherever we need them to satisfy data dependences.
const Type *RetTy = MVT::getTypeForValueType(Node->getValueType(0));
SDOperand Result = TLI.LowerCallTo(DAG.getEntryNode(), RetTy, Callee,
Args, DAG).first;
switch (getTypeAction(Result.getValueType())) {
default: assert(0 && "Unknown thing");
case Legal:
return Result;
case Promote:
assert(0 && "Cannot promote this yet!");
case Expand:
SDOperand Lo;
ExpandOp(Result, Lo, Hi);
return Lo;
}
}
/// ExpandIntToFP - Expand a [US]INT_TO_FP operation, assuming that the
/// destination type is legal.
SDOperand SelectionDAGLegalize::
ExpandIntToFP(bool isSigned, MVT::ValueType DestTy, SDOperand Source) {
assert(getTypeAction(DestTy) == Legal && "Destination type is not legal!");
assert(getTypeAction(Source.getValueType()) == Expand &&
"This is not an expansion!");
assert(Source.getValueType() == MVT::i64 && "Only handle expand from i64!");
const char *FnName;
if (isSigned) {
if (DestTy == MVT::f32)
FnName = "__floatdisf";
else {
assert(DestTy == MVT::f64 && "Unknown fp value type!");
FnName = "__floatdidf";
}
} else {
// If this is unsigned, and not supported, first perform the conversion to
// signed, then adjust the result if the sign bit is set.
SDOperand SignedConv = ExpandIntToFP(false, DestTy, Source);
assert(0 && "Unsigned casts not supported yet!");
}
SDOperand Callee = DAG.getExternalSymbol(FnName, TLI.getPointerTy());
TargetLowering::ArgListTy Args;
const Type *ArgTy = MVT::getTypeForValueType(Source.getValueType());
Args.push_back(std::make_pair(Source, ArgTy));
// We don't care about token chains for libcalls. We just use the entry
// node as our input and ignore the output chain. This allows us to place
// calls wherever we need them to satisfy data dependences.
const Type *RetTy = MVT::getTypeForValueType(DestTy);
return TLI.LowerCallTo(DAG.getEntryNode(), RetTy, Callee,
Args, DAG).first;
}
/// ExpandOp - Expand the specified SDOperand into its two component pieces /// ExpandOp - Expand the specified SDOperand into its two component pieces
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
@ -1313,7 +1407,6 @@ void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
// is not careful to avoid operations the target does not support. Make sure // is not careful to avoid operations the target does not support. Make sure
// that all generated operations are legalized in the next iteration. // that all generated operations are legalized in the next iteration.
NeedsAnotherIteration = true; NeedsAnotherIteration = true;
const char *LibCallName = 0;
switch (Node->getOpcode()) { switch (Node->getOpcode()) {
default: default:
@ -1441,41 +1534,38 @@ void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
// library functions. // library functions.
case ISD::FP_TO_SINT: case ISD::FP_TO_SINT:
if (Node->getOperand(0).getValueType() == MVT::f32) if (Node->getOperand(0).getValueType() == MVT::f32)
LibCallName = "__fixsfdi"; Lo = ExpandLibCall("__fixsfdi", Node, Hi);
else else
LibCallName = "__fixdfdi"; Lo = ExpandLibCall("__fixdfdi", Node, Hi);
break; break;
case ISD::FP_TO_UINT: case ISD::FP_TO_UINT:
if (Node->getOperand(0).getValueType() == MVT::f32) if (Node->getOperand(0).getValueType() == MVT::f32)
LibCallName = "__fixunssfdi"; Lo = ExpandLibCall("__fixunssfdi", Node, Hi);
else else
LibCallName = "__fixunsdfdi"; Lo = ExpandLibCall("__fixunsdfdi", Node, Hi);
break; break;
case ISD::SHL: case ISD::SHL:
// If we can emit an efficient shift operation, do so now. // If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SHL, Node->getOperand(0), Node->getOperand(1), if (ExpandShift(ISD::SHL, Node->getOperand(0), Node->getOperand(1), Lo, Hi))
Lo, Hi))
break; break;
// Otherwise, emit a libcall. // Otherwise, emit a libcall.
LibCallName = "__ashldi3"; Lo = ExpandLibCall("__ashldi3", Node, Hi);
break; break;
case ISD::SRA: case ISD::SRA:
// If we can emit an efficient shift operation, do so now. // If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRA, Node->getOperand(0), Node->getOperand(1), if (ExpandShift(ISD::SRA, Node->getOperand(0), Node->getOperand(1), Lo, Hi))
Lo, Hi))
break; break;
// Otherwise, emit a libcall. // Otherwise, emit a libcall.
LibCallName = "__ashrdi3"; Lo = ExpandLibCall("__ashrdi3", Node, Hi);
break; break;
case ISD::SRL: case ISD::SRL:
// If we can emit an efficient shift operation, do so now. // If we can emit an efficient shift operation, do so now.
if (ExpandShift(ISD::SRL, Node->getOperand(0), Node->getOperand(1), if (ExpandShift(ISD::SRL, Node->getOperand(0), Node->getOperand(1), Lo, Hi))
Lo, Hi))
break; break;
// Otherwise, emit a libcall. // Otherwise, emit a libcall.
LibCallName = "__lshrdi3"; Lo = ExpandLibCall("__lshrdi3", Node, Hi);
break; break;
case ISD::ADD: case ISD::ADD:
@ -1484,30 +1574,11 @@ void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
case ISD::SUB: case ISD::SUB:
ExpandAddSub(false, Node->getOperand(0), Node->getOperand(1), Lo, Hi); ExpandAddSub(false, Node->getOperand(0), Node->getOperand(1), Lo, Hi);
break; break;
case ISD::MUL: LibCallName = "__muldi3"; break; case ISD::MUL: Lo = ExpandLibCall("__muldi3" , Node, Hi); break;
case ISD::SDIV: LibCallName = "__divdi3"; break; case ISD::SDIV: Lo = ExpandLibCall("__divdi3" , Node, Hi); break;
case ISD::UDIV: LibCallName = "__udivdi3"; break; case ISD::UDIV: Lo = ExpandLibCall("__udivdi3", Node, Hi); break;
case ISD::SREM: LibCallName = "__moddi3"; break; case ISD::SREM: Lo = ExpandLibCall("__moddi3" , Node, Hi); break;
case ISD::UREM: LibCallName = "__umoddi3"; break; case ISD::UREM: Lo = ExpandLibCall("__umoddi3", Node, Hi); break;
}
// Int2FP -> __floatdisf/__floatdidf
// If this is to be expanded into a libcall... do so now.
if (LibCallName) {
TargetLowering::ArgListTy Args;
for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
Args.push_back(std::make_pair(Node->getOperand(i),
MVT::getTypeForValueType(Node->getOperand(i).getValueType())));
SDOperand Callee = DAG.getExternalSymbol(LibCallName, TLI.getPointerTy());
// We don't care about token chains for libcalls. We just use the entry
// node as our input and ignore the output chain. This allows us to place
// calls wherever we need them to satisfy data dependences.
SDOperand Result = TLI.LowerCallTo(DAG.getEntryNode(),
MVT::getTypeForValueType(Op.getValueType()), Callee,
Args, DAG).first;
ExpandOp(Result, Lo, Hi);
} }
// Remember in a map if the values will be reused later. // Remember in a map if the values will be reused later.