Seperate analysis wrapper stuff to AnalysisWrappers.cpp

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3127 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-07-29 21:24:10 +00:00
parent 6eea01ed8e
commit 781e6f5f89
3 changed files with 202 additions and 120 deletions

View File

@ -0,0 +1,101 @@
//===- AnalysisWrappers.cpp - Wrappers around non-pass analyses -----------===//
//
// This file defines pass wrappers around LLVM analyses that don't make sense to
// be passes. It provides a nice standard pass interface to these classes so
// that they can be printed out by analyze.
//
// These classes are seperated out of analyze.cpp so that it is more clear which
// code is the integral part of the analyze tool, and which part of the code is
// just making it so more passes are available.
//
//===----------------------------------------------------------------------===//
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/InstIterator.h"
namespace {
struct InstForestHelper : public FunctionPass {
Function *F;
virtual bool runOnFunction(Function &Func) { F = &Func; return false; }
void print(std::ostream &OS) const {
std::cout << InstForest<char>(F);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
RegisterAnalysis<InstForestHelper> P1("instforest", "InstForest Printer");
struct IndVars : public FunctionPass {
Function *F;
LoopInfo *LI;
virtual bool runOnFunction(Function &Func) {
F = &Func; LI = &getAnalysis<LoopInfo>();
return false;
}
void print(std::ostream &OS) const {
for (inst_iterator I = inst_begin(*F), E = inst_end(*F); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
InductionVariable IV(PN, LI);
if (IV.InductionType != InductionVariable::Unknown)
IV.print(OS);
}
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(LoopInfo::ID);
AU.setPreservesAll();
}
};
RegisterAnalysis<IndVars> P6("indvars", "Induction Variable Analysis");
struct Exprs : public FunctionPass {
Function *F;
virtual bool runOnFunction(Function &Func) { F = &Func; return false; }
void print(std::ostream &OS) const {
OS << "Classified expressions for: " << F->getName() << "\n";
for (inst_iterator I = inst_begin(*F), E = inst_end(*F); I != E; ++I) {
OS << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
OS << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
WriteAsOperand(OS << "(", R.Var) << " )";
if (R.Offset == 0) break;
else OS << " +";
// fall through
case analysis::ExprType::Constant:
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
else OS << " 0";
break;
}
OS << "\n\n";
}
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
RegisterAnalysis<Exprs> P7("exprs", "Expression Printer");
}

View File

@ -11,132 +11,12 @@
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/PassManager.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Assembly/Parser.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/PassNameParser.h"
#include <algorithm>
using std::ostream;
#if 0
template <class PassType, class PassName>
class PassPrinter; // Do not implement
template <class PassName>
class PassPrinter<Pass, PassName> : public Pass {
const AnalysisID ID;
public:
PassPrinter(AnalysisID id) : ID(id) {}
const char *getPassName() const { return "IP Pass Printer"; }
virtual bool run(Module &M) {
printPass(getAnalysis<PassName>(ID), std::cout, M);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(ID);
}
};
template <class PassName>
class PassPrinter<FunctionPass, PassName> : public FunctionPass {
const AnalysisID ID;
public:
PassPrinter(AnalysisID id) : ID(id) {}
const char *getPassName() const { return "Function Pass Printer"; }
virtual bool runOnFunction(Function &F) {
std::cout << "Running on function '" << F.getName() << "'\n";
printPass(getAnalysis<PassName>(ID), std::cout, F);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(ID);
AU.setPreservesAll();
}
};
struct InstForestHelper : public FunctionPass {
const char *getPassName() const { return "InstForest Printer"; }
void doit(Function &F) {
std::cout << InstForest<char>(&F);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
struct IndVars : public FunctionPass {
const char *getPassName() const { return "IndVars Printer"; }
void doit(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfo>();
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
InductionVariable IV(PN, &LI);
if (IV.InductionType != InductionVariable::Unknown)
IV.print(std::cout);
}
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(LoopInfo::ID);
AU.setPreservesAll();
}
};
struct Exprs : public FunctionPass {
const char *getPassName() const { return "Expression Printer"; }
static void doit(Function &F) {
std::cout << "Classified expressions for: " << F.getName() << "\n";
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
std::cout << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
std::cout << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
WriteAsOperand(std::cout << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
WriteAsOperand(std::cout << "(", R.Var) << " )";
if (R.Offset == 0) break;
else std::cout << " +";
// fall through
case analysis::ExprType::Constant:
if (R.Offset) WriteAsOperand(std::cout, (Value*)R.Offset);
else std::cout << " 0";
break;
}
std::cout << "\n\n";
}
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
#endif
struct ModulePassPrinter : public Pass {
Pass *PassToPrint;

View File

@ -0,0 +1,101 @@
//===- AnalysisWrappers.cpp - Wrappers around non-pass analyses -----------===//
//
// This file defines pass wrappers around LLVM analyses that don't make sense to
// be passes. It provides a nice standard pass interface to these classes so
// that they can be printed out by analyze.
//
// These classes are seperated out of analyze.cpp so that it is more clear which
// code is the integral part of the analyze tool, and which part of the code is
// just making it so more passes are available.
//
//===----------------------------------------------------------------------===//
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/InstForest.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/Analysis/InductionVariable.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/InstIterator.h"
namespace {
struct InstForestHelper : public FunctionPass {
Function *F;
virtual bool runOnFunction(Function &Func) { F = &Func; return false; }
void print(std::ostream &OS) const {
std::cout << InstForest<char>(F);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
RegisterAnalysis<InstForestHelper> P1("instforest", "InstForest Printer");
struct IndVars : public FunctionPass {
Function *F;
LoopInfo *LI;
virtual bool runOnFunction(Function &Func) {
F = &Func; LI = &getAnalysis<LoopInfo>();
return false;
}
void print(std::ostream &OS) const {
for (inst_iterator I = inst_begin(*F), E = inst_end(*F); I != E; ++I)
if (PHINode *PN = dyn_cast<PHINode>(*I)) {
InductionVariable IV(PN, LI);
if (IV.InductionType != InductionVariable::Unknown)
IV.print(OS);
}
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(LoopInfo::ID);
AU.setPreservesAll();
}
};
RegisterAnalysis<IndVars> P6("indvars", "Induction Variable Analysis");
struct Exprs : public FunctionPass {
Function *F;
virtual bool runOnFunction(Function &Func) { F = &Func; return false; }
void print(std::ostream &OS) const {
OS << "Classified expressions for: " << F->getName() << "\n";
for (inst_iterator I = inst_begin(*F), E = inst_end(*F); I != E; ++I) {
OS << *I;
if ((*I)->getType() == Type::VoidTy) continue;
analysis::ExprType R = analysis::ClassifyExpression(*I);
if (R.Var == *I) continue; // Doesn't tell us anything
OS << "\t\tExpr =";
switch (R.ExprTy) {
case analysis::ExprType::ScaledLinear:
WriteAsOperand(OS << "(", (Value*)R.Scale) << " ) *";
// fall through
case analysis::ExprType::Linear:
WriteAsOperand(OS << "(", R.Var) << " )";
if (R.Offset == 0) break;
else OS << " +";
// fall through
case analysis::ExprType::Constant:
if (R.Offset) WriteAsOperand(OS, (Value*)R.Offset);
else OS << " 0";
break;
}
OS << "\n\n";
}
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
RegisterAnalysis<Exprs> P7("exprs", "Expression Printer");
}