diff --git a/lib/Transforms/Scalar/SCCP.cpp b/lib/Transforms/Scalar/SCCP.cpp index e4cb55c37bc..c4fc38ae083 100644 --- a/lib/Transforms/Scalar/SCCP.cpp +++ b/lib/Transforms/Scalar/SCCP.cpp @@ -25,7 +25,6 @@ #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/ValueTracking.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetLibraryInfo.h" @@ -40,9 +39,7 @@ #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" -#include "llvm/ADT/STLExtras.h" #include -#include using namespace llvm; STATISTIC(NumInstRemoved, "Number of instructions removed"); @@ -60,7 +57,7 @@ class LatticeVal { enum LatticeValueTy { /// undefined - This LLVM Value has no known value yet. undefined, - + /// constant - This LLVM Value has a specific constant value. constant, @@ -69,7 +66,7 @@ class LatticeVal { /// with another (different) constant, it goes to overdefined, instead of /// asserting. forcedconstant, - + /// overdefined - This instruction is not known to be constant, and we know /// it has a value. overdefined @@ -78,30 +75,30 @@ class LatticeVal { /// Val: This stores the current lattice value along with the Constant* for /// the constant if this is a 'constant' or 'forcedconstant' value. PointerIntPair Val; - + LatticeValueTy getLatticeValue() const { return Val.getInt(); } - + public: LatticeVal() : Val(0, undefined) {} - + bool isUndefined() const { return getLatticeValue() == undefined; } bool isConstant() const { return getLatticeValue() == constant || getLatticeValue() == forcedconstant; } bool isOverdefined() const { return getLatticeValue() == overdefined; } - + Constant *getConstant() const { assert(isConstant() && "Cannot get the constant of a non-constant!"); return Val.getPointer(); } - + /// markOverdefined - Return true if this is a change in status. bool markOverdefined() { if (isOverdefined()) return false; - + Val.setInt(overdefined); return true; } @@ -112,17 +109,17 @@ public: assert(getConstant() == V && "Marking constant with different value"); return false; } - + if (isUndefined()) { Val.setInt(constant); assert(V && "Marking constant with NULL"); Val.setPointer(V); } else { - assert(getLatticeValue() == forcedconstant && + assert(getLatticeValue() == forcedconstant && "Cannot move from overdefined to constant!"); // Stay at forcedconstant if the constant is the same. if (V == getConstant()) return false; - + // Otherwise, we go to overdefined. Assumptions made based on the // forced value are possibly wrong. Assuming this is another constant // could expose a contradiction. @@ -138,7 +135,7 @@ public: return dyn_cast(getConstant()); return 0; } - + void markForcedConstant(Constant *V) { assert(isUndefined() && "Can't force a defined value!"); Val.setInt(forcedconstant); @@ -165,7 +162,7 @@ class SCCPSolver : public InstVisitor { /// StructType, for example for formal arguments, calls, insertelement, etc. /// DenseMap, LatticeVal> StructValueState; - + /// GlobalValue - If we are tracking any values for the contents of a global /// variable, we keep a mapping from the constant accessor to the element of /// the global, to the currently known value. If the value becomes @@ -180,7 +177,7 @@ class SCCPSolver : public InstVisitor { /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions /// that return multiple values. DenseMap, LatticeVal> TrackedMultipleRetVals; - + /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is /// represented here for efficient lookup. SmallPtrSet MRVFunctionsTracked; @@ -189,7 +186,7 @@ class SCCPSolver : public InstVisitor { /// arguments we make optimistic assumptions about and try to prove as /// constants. SmallPtrSet TrackingIncomingArguments; - + /// The reason for two worklists is that overdefined is the lowest state /// on the lattice, and moving things to overdefined as fast as possible /// makes SCCP converge much faster. @@ -252,7 +249,7 @@ public: void AddArgumentTrackedFunction(Function *F) { TrackingIncomingArguments.insert(F); } - + /// Solve - Solve for constants and executable blocks. /// void Solve(); @@ -273,9 +270,9 @@ public: assert(I != ValueState.end() && "V is not in valuemap!"); return I->second; } - + /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { - DenseMap, LatticeVal>::const_iterator I = + DenseMap, LatticeVal>::const_iterator I = StructValueState.find(std::make_pair(V, i)); assert(I != StructValueState.end() && "V is not in valuemap!"); return I->second; @@ -307,7 +304,7 @@ public: else markOverdefined(V); } - + private: // markConstant - Make a value be marked as "constant". If the value // is not already a constant, add it to the instruction work list so that @@ -321,7 +318,7 @@ private: else InstWorkList.push_back(V); } - + void markConstant(Value *V, Constant *C) { assert(!V->getType()->isStructTy() && "Should use other method"); markConstant(ValueState[V], V, C); @@ -337,14 +334,14 @@ private: else InstWorkList.push_back(V); } - - + + // markOverdefined - Make a value be marked as "overdefined". If the // value is not already overdefined, add it to the overdefined instruction // work list so that the users of the instruction are updated later. void markOverdefined(LatticeVal &IV, Value *V) { if (!IV.markOverdefined()) return; - + DEBUG(dbgs() << "markOverdefined: "; if (Function *F = dyn_cast(V)) dbgs() << "Function '" << F->getName() << "'\n"; @@ -364,7 +361,7 @@ private: else if (IV.getConstant() != MergeWithV.getConstant()) markOverdefined(IV, V); } - + void mergeInValue(Value *V, LatticeVal MergeWithV) { assert(!V->getType()->isStructTy() && "Should use other method"); mergeInValue(ValueState[V], V, MergeWithV); @@ -389,7 +386,7 @@ private: if (!isa(V)) LV.markConstant(C); // Constants are constant } - + // All others are underdefined by default. return LV; } @@ -421,11 +418,11 @@ private: } else LV.markOverdefined(); // Unknown sort of constant. } - + // All others are underdefined by default. return LV; } - + /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB /// work list if it is not already executable. @@ -531,7 +528,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, Succs[0] = true; return; } - + LatticeVal BCValue = getValueState(BI->getCondition()); ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) { @@ -541,18 +538,18 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, Succs[0] = Succs[1] = true; return; } - + // Constant condition variables mean the branch can only go a single way. Succs[CI->isZero()] = true; return; } - + if (isa(TI)) { // Invoke instructions successors are always executable. Succs[0] = Succs[1] = true; return; } - + if (SwitchInst *SI = dyn_cast(&TI)) { if (TI.getNumSuccessors() < 2) { Succs[0] = true; @@ -560,25 +557,25 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, } LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); - + if (CI == 0) { // Overdefined or undefined condition? // All destinations are executable! if (!SCValue.isUndefined()) Succs.assign(TI.getNumSuccessors(), true); return; } - + Succs[SI->findCaseValue(CI)] = true; return; } - + // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa(&TI)) { // Just mark all destinations executable! Succs.assign(TI.getNumSuccessors(), true); return; } - + #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << TI << '\n'; #endif @@ -600,7 +597,7 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { if (BranchInst *BI = dyn_cast(TI)) { if (BI->isUnconditional()) return true; - + LatticeVal BCValue = getValueState(BI->getCondition()); // Overdefined condition variables mean the branch could go either way, @@ -608,22 +605,22 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { ConstantInt *CI = BCValue.getConstantInt(); if (CI == 0) return !BCValue.isUndefined(); - + // Constant condition variables mean the branch can only go a single way. return BI->getSuccessor(CI->isZero()) == To; } - + // Invoke instructions successors are always executable. if (isa(TI)) return true; - + if (SwitchInst *SI = dyn_cast(TI)) { if (SI->getNumSuccessors() < 2) return true; LatticeVal SCValue = getValueState(SI->getCondition()); ConstantInt *CI = SCValue.getConstantInt(); - + if (CI == 0) return !SCValue.isUndefined(); @@ -636,12 +633,12 @@ bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { // execute default branch. return SI->getDefaultDest() == To; } - + // Just mark all destinations executable! // TODO: This could be improved if the operand is a [cast of a] BlockAddress. if (isa(TI)) return true; - + #ifndef NDEBUG dbgs() << "Unknown terminator instruction: " << *TI << '\n'; #endif @@ -671,7 +668,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) { // TODO: We could do a lot better than this if code actually uses this. if (PN.getType()->isStructTy()) return markAnythingOverdefined(&PN); - + if (getValueState(&PN).isOverdefined()) return; // Quick exit @@ -679,7 +676,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) { // and slow us down a lot. Just mark them overdefined. if (PN.getNumIncomingValues() > 64) return markOverdefined(&PN); - + // Look at all of the executable operands of the PHI node. If any of them // are overdefined, the PHI becomes overdefined as well. If they are all // constant, and they agree with each other, the PHI becomes the identical @@ -693,7 +690,7 @@ void SCCPSolver::visitPHINode(PHINode &PN) { if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) continue; - + if (IV.isOverdefined()) // PHI node becomes overdefined! return markOverdefined(&PN); @@ -701,11 +698,11 @@ void SCCPSolver::visitPHINode(PHINode &PN) { OperandVal = IV.getConstant(); continue; } - + // There is already a reachable operand. If we conflict with it, // then the PHI node becomes overdefined. If we agree with it, we // can continue on. - + // Check to see if there are two different constants merging, if so, the PHI // node is overdefined. if (IV.getConstant() != OperandVal) @@ -729,7 +726,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { Function *F = I.getParent()->getParent(); Value *ResultOp = I.getOperand(0); - + // If we are tracking the return value of this function, merge it in. if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { DenseMap::iterator TFRVI = @@ -739,7 +736,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { return; } } - + // Handle functions that return multiple values. if (!TrackedMultipleRetVals.empty()) { if (StructType *STy = dyn_cast(ResultOp->getType())) @@ -747,7 +744,7 @@ void SCCPSolver::visitReturnInst(ReturnInst &I) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, getStructValueState(ResultOp, i)); - + } } @@ -768,7 +765,7 @@ void SCCPSolver::visitCastInst(CastInst &I) { if (OpSt.isOverdefined()) // Inherit overdefinedness of operand markOverdefined(&I); else if (OpSt.isConstant()) // Propagate constant value - markConstant(&I, ConstantExpr::getCast(I.getOpcode(), + markConstant(&I, ConstantExpr::getCast(I.getOpcode(), OpSt.getConstant(), I.getType())); } @@ -778,7 +775,7 @@ void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { // structs in structs. if (EVI.getType()->isStructTy()) return markAnythingOverdefined(&EVI); - + // If this is extracting from more than one level of struct, we don't know. if (EVI.getNumIndices() != 1) return markOverdefined(&EVI); @@ -798,15 +795,15 @@ void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { StructType *STy = dyn_cast(IVI.getType()); if (STy == 0) return markOverdefined(&IVI); - + // If this has more than one index, we can't handle it, drive all results to // undef. if (IVI.getNumIndices() != 1) return markAnythingOverdefined(&IVI); - + Value *Aggr = IVI.getAggregateOperand(); unsigned Idx = *IVI.idx_begin(); - + // Compute the result based on what we're inserting. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { // This passes through all values that aren't the inserted element. @@ -815,7 +812,7 @@ void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); continue; } - + Value *Val = IVI.getInsertedValueOperand(); if (Val->getType()->isStructTy()) // We don't track structs in structs. @@ -832,25 +829,25 @@ void SCCPSolver::visitSelectInst(SelectInst &I) { // TODO: We could do a lot better than this if code actually uses this. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); - + LatticeVal CondValue = getValueState(I.getCondition()); if (CondValue.isUndefined()) return; - + if (ConstantInt *CondCB = CondValue.getConstantInt()) { Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); mergeInValue(&I, getValueState(OpVal)); return; } - + // Otherwise, the condition is overdefined or a constant we can't evaluate. // See if we can produce something better than overdefined based on the T/F // value. LatticeVal TVal = getValueState(I.getTrueValue()); LatticeVal FVal = getValueState(I.getFalseValue()); - + // select ?, C, C -> C. - if (TVal.isConstant() && FVal.isConstant() && + if (TVal.isConstant() && FVal.isConstant() && TVal.getConstant() == FVal.getConstant()) return markConstant(&I, FVal.getConstant()); @@ -865,7 +862,7 @@ void SCCPSolver::visitSelectInst(SelectInst &I) { void SCCPSolver::visitBinaryOperator(Instruction &I) { LatticeVal V1State = getValueState(I.getOperand(0)); LatticeVal V2State = getValueState(I.getOperand(1)); - + LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; @@ -873,14 +870,14 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { return markConstant(IV, &I, ConstantExpr::get(I.getOpcode(), V1State.getConstant(), V2State.getConstant())); - + // If something is undef, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; - + // Otherwise, one of our operands is overdefined. Try to produce something // better than overdefined with some tricks. - + // If this is an AND or OR with 0 or -1, it doesn't matter that the other // operand is overdefined. if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { @@ -902,7 +899,7 @@ void SCCPSolver::visitBinaryOperator(Instruction &I) { Constant::getAllOnesValue(I.getType())); return; } - + if (I.getOpcode() == Instruction::And) { // X and 0 = 0 if (NonOverdefVal->getConstant()->isNullValue()) @@ -928,14 +925,14 @@ void SCCPSolver::visitCmpInst(CmpInst &I) { if (IV.isOverdefined()) return; if (V1State.isConstant() && V2State.isConstant()) - return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), - V1State.getConstant(), + return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), + V1State.getConstant(), V2State.getConstant())); - + // If operands are still undefined, wait for it to resolve. if (!V1State.isOverdefined() && !V2State.isOverdefined()) return; - + markOverdefined(&I); } @@ -972,7 +969,7 @@ void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { EltState.getConstant(), IdxState.getConstant())); else if (ValState.isUndefined() && EltState.isConstant() && - IdxState.isConstant()) + IdxState.isConstant()) markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), EltState.getConstant(), IdxState.getConstant())); @@ -990,17 +987,17 @@ void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { if (MaskState.isUndefined() || (V1State.isUndefined() && V2State.isUndefined())) return; // Undefined output if mask or both inputs undefined. - + if (V1State.isOverdefined() || V2State.isOverdefined() || MaskState.isOverdefined()) { markOverdefined(&I); } else { // A mix of constant/undef inputs. - Constant *V1 = V1State.isConstant() ? + Constant *V1 = V1State.isConstant() ? V1State.getConstant() : UndefValue::get(I.getType()); - Constant *V2 = V2State.isConstant() ? + Constant *V2 = V2State.isConstant() ? V2State.getConstant() : UndefValue::get(I.getType()); - Constant *Mask = MaskState.isConstant() ? + Constant *Mask = MaskState.isConstant() ? MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); } @@ -1020,7 +1017,7 @@ void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { LatticeVal State = getValueState(I.getOperand(i)); if (State.isUndefined()) return; // Operands are not resolved yet. - + if (State.isOverdefined()) return markOverdefined(&I); @@ -1037,10 +1034,10 @@ void SCCPSolver::visitStoreInst(StoreInst &SI) { // If this store is of a struct, ignore it. if (SI.getOperand(0)->getType()->isStructTy()) return; - + if (TrackedGlobals.empty() || !isa(SI.getOperand(1))) return; - + GlobalVariable *GV = cast(SI.getOperand(1)); DenseMap::iterator I = TrackedGlobals.find(GV); if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; @@ -1058,22 +1055,22 @@ void SCCPSolver::visitLoadInst(LoadInst &I) { // If this load is of a struct, just mark the result overdefined. if (I.getType()->isStructTy()) return markAnythingOverdefined(&I); - + LatticeVal PtrVal = getValueState(I.getOperand(0)); if (PtrVal.isUndefined()) return; // The pointer is not resolved yet! - + LatticeVal &IV = ValueState[&I]; if (IV.isOverdefined()) return; if (!PtrVal.isConstant() || I.isVolatile()) return markOverdefined(IV, &I); - + Constant *Ptr = PtrVal.getConstant(); // load null -> null if (isa(Ptr) && I.getPointerAddressSpace() == 0) return markConstant(IV, &I, Constant::getNullValue(I.getType())); - + // Transform load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Ptr)) { if (!TrackedGlobals.empty()) { @@ -1099,7 +1096,7 @@ void SCCPSolver::visitLoadInst(LoadInst &I) { void SCCPSolver::visitCallSite(CallSite CS) { Function *F = CS.getCalledFunction(); Instruction *I = CS.getInstruction(); - + // The common case is that we aren't tracking the callee, either because we // are not doing interprocedural analysis or the callee is indirect, or is // external. Handle these cases first. @@ -1107,17 +1104,17 @@ void SCCPSolver::visitCallSite(CallSite CS) { CallOverdefined: // Void return and not tracking callee, just bail. if (I->getType()->isVoidTy()) return; - + // Otherwise, if we have a single return value case, and if the function is // a declaration, maybe we can constant fold it. if (F && F->isDeclaration() && !I->getType()->isStructTy() && canConstantFoldCallTo(F)) { - + SmallVector Operands; for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); AI != E; ++AI) { LatticeVal State = getValueState(*AI); - + if (State.isUndefined()) return; // Operands are not resolved yet. if (State.isOverdefined()) @@ -1125,7 +1122,7 @@ CallOverdefined: assert(State.isConstant() && "Unknown state!"); Operands.push_back(State.getConstant()); } - + // If we can constant fold this, mark the result of the call as a // constant. if (Constant *C = ConstantFoldCall(F, Operands, TLI)) @@ -1141,7 +1138,7 @@ CallOverdefined: // the formal arguments of the function. if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ MarkBlockExecutable(F->begin()); - + // Propagate information from this call site into the callee. CallSite::arg_iterator CAI = CS.arg_begin(); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); @@ -1152,7 +1149,7 @@ CallOverdefined: markOverdefined(AI); continue; } - + if (StructType *STy = dyn_cast(AI->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { LatticeVal CallArg = getStructValueState(*CAI, i); @@ -1163,22 +1160,22 @@ CallOverdefined: } } } - + // If this is a single/zero retval case, see if we're tracking the function. if (StructType *STy = dyn_cast(F->getReturnType())) { if (!MRVFunctionsTracked.count(F)) goto CallOverdefined; // Not tracking this callee. - + // If we are tracking this callee, propagate the result of the function // into this call site. for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) - mergeInValue(getStructValueState(I, i), I, + mergeInValue(getStructValueState(I, i), I, TrackedMultipleRetVals[std::make_pair(F, i)]); } else { DenseMap::iterator TFRVI = TrackedRetVals.find(F); if (TFRVI == TrackedRetVals.end()) goto CallOverdefined; // Not tracking this callee. - + // If so, propagate the return value of the callee into this call result. mergeInValue(I, TFRVI->second); } @@ -1207,7 +1204,7 @@ void SCCPSolver::Solve() { if (Instruction *I = dyn_cast(*UI)) OperandChangedState(I); } - + // Process the instruction work list. while (!InstWorkList.empty()) { Value *I = InstWorkList.pop_back_val(); @@ -1264,11 +1261,11 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { if (!BBExecutable.count(BB)) continue; - + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { // Look for instructions which produce undef values. if (I->getType()->isVoidTy()) continue; - + if (StructType *STy = dyn_cast(I->getType())) { // Only a few things that can be structs matter for undef. @@ -1279,7 +1276,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { continue; // extractvalue and insertvalue don't need to be marked; they are - // tracked as precisely as their operands. + // tracked as precisely as their operands. if (isa(I) || isa(I)) continue; @@ -1386,12 +1383,12 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { // X / undef -> undef. No change. // X % undef -> undef. No change. if (Op1LV.isUndefined()) break; - + // undef / X -> 0. X could be maxint. // undef % X -> 0. X could be 1. markForcedConstant(I, Constant::getNullValue(ITy)); return true; - + case Instruction::AShr: // X >>a undef -> undef. if (Op1LV.isUndefined()) break; @@ -1424,7 +1421,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { } else { // Leave Op1LV as Operand(1)'s LatticeValue. } - + if (Op1LV.isConstant()) markForcedConstant(I, Op1LV.getConstant()); else @@ -1464,7 +1461,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { return true; } } - + // Check to see if we have a branch or switch on an undefined value. If so // we force the branch to go one way or the other to make the successor // values live. It doesn't really matter which way we force it. @@ -1473,7 +1470,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { if (!BI->isConditional()) continue; if (!getValueState(BI->getCondition()).isUndefined()) continue; - + // If the input to SCCP is actually branch on undef, fix the undef to // false. if (isa(BI->getCondition())) { @@ -1481,7 +1478,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { markEdgeExecutable(BB, TI->getSuccessor(1)); return true; } - + // Otherwise, it is a branch on a symbolic value which is currently // considered to be undef. Handle this by forcing the input value to the // branch to false. @@ -1489,13 +1486,13 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { ConstantInt::getFalse(TI->getContext())); return true; } - + if (SwitchInst *SI = dyn_cast(TI)) { if (SI->getNumSuccessors() < 2) // no cases continue; if (!getValueState(SI->getCondition()).isUndefined()) continue; - + // If the input to SCCP is actually switch on undef, fix the undef to // the first constant. if (isa(SI->getCondition())) { @@ -1503,7 +1500,7 @@ bool SCCPSolver::ResolvedUndefsIn(Function &F) { markEdgeExecutable(BB, TI->getSuccessor(1)); return true; } - + markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); return true; } @@ -1606,7 +1603,7 @@ bool SCCP::runOnFunction(Function &F) { MadeChanges = true; continue; } - + // Iterate over all of the instructions in a function, replacing them with // constants if we have found them to be of constant values. // @@ -1614,25 +1611,25 @@ bool SCCP::runOnFunction(Function &F) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || isa(Inst)) continue; - + // TODO: Reconstruct structs from their elements. if (Inst->getType()->isStructTy()) continue; - + LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; - + Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); // Replaces all of the uses of a variable with uses of the constant. Inst->replaceAllUsesWith(Const); - + // Delete the instruction. Inst->eraseFromParent(); - + // Hey, we just changed something! MadeChanges = true; ++NumInstRemoved; @@ -1714,19 +1711,19 @@ bool IPSCCP::runOnModule(Module &M) { // address-taken-ness. Because of this, we keep track of their addresses from // the first pass so we can use them for the later simplification pass. SmallPtrSet AddressTakenFunctions; - + // Loop over all functions, marking arguments to those with their addresses // taken or that are external as overdefined. // for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { if (F->isDeclaration()) continue; - + // If this is a strong or ODR definition of this function, then we can // propagate information about its result into callsites of it. if (!F->mayBeOverridden()) Solver.AddTrackedFunction(F); - + // If this function only has direct calls that we can see, we can track its // arguments and return value aggressively, and can assume it is not called // unless we see evidence to the contrary. @@ -1741,7 +1738,7 @@ bool IPSCCP::runOnModule(Module &M) { // Assume the function is called. Solver.MarkBlockExecutable(F->begin()); - + // Assume nothing about the incoming arguments. for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) @@ -1779,17 +1776,17 @@ bool IPSCCP::runOnModule(Module &M) { for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { if (AI->use_empty() || AI->getType()->isStructTy()) continue; - + // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. LatticeVal IV = Solver.getLatticeValueFor(AI); if (IV.isOverdefined()) continue; - + Constant *CST = IV.isConstant() ? IV.getConstant() : UndefValue::get(AI->getType()); DEBUG(dbgs() << "*** Arg " << *AI << " = " << *CST <<"\n"); - + // Replaces all of the uses of a variable with uses of the // constant. AI->replaceAllUsesWith(CST); @@ -1818,19 +1815,19 @@ bool IPSCCP::runOnModule(Module &M) { new UnreachableInst(M.getContext(), BB); continue; } - + for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { Instruction *Inst = BI++; if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) continue; - + // TODO: Could use getStructLatticeValueFor to find out if the entire // result is a constant and replace it entirely if so. - + LatticeVal IV = Solver.getLatticeValueFor(Inst); if (IV.isOverdefined()) continue; - + Constant *Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(Inst->getType()); DEBUG(dbgs() << " Constant: " << *Const << " = " << *Inst); @@ -1838,7 +1835,7 @@ bool IPSCCP::runOnModule(Module &M) { // Replaces all of the uses of a variable with uses of the // constant. Inst->replaceAllUsesWith(Const); - + // Delete the instruction. if (!isa(Inst) && !isa(Inst)) Inst->eraseFromParent(); @@ -1880,15 +1877,15 @@ bool IPSCCP::runOnModule(Module &M) { llvm_unreachable("Didn't fold away reference to block!"); } #endif - + // Make this an uncond branch to the first successor. TerminatorInst *TI = I->getParent()->getTerminator(); BranchInst::Create(TI->getSuccessor(0), TI); - + // Remove entries in successor phi nodes to remove edges. for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) TI->getSuccessor(i)->removePredecessor(TI->getParent()); - + // Remove the old terminator. TI->eraseFromParent(); } @@ -1911,7 +1908,7 @@ bool IPSCCP::runOnModule(Module &M) { // last use of a function, the order of processing functions would affect // whether other functions are optimizable. SmallVector ReturnsToZap; - + // TODO: Process multiple value ret instructions also. const DenseMap &RV = Solver.getTrackedRetVals(); for (DenseMap::const_iterator I = RV.begin(), @@ -1919,11 +1916,11 @@ bool IPSCCP::runOnModule(Module &M) { Function *F = I->first; if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) continue; - + // We can only do this if we know that nothing else can call the function. if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F)) continue; - + for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast(BB->getTerminator())) if (!isa(RI->getOperand(0))) @@ -1935,7 +1932,7 @@ bool IPSCCP::runOnModule(Module &M) { Function *F = ReturnsToZap[i]->getParent()->getParent(); ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); } - + // If we inferred constant or undef values for globals variables, we can delete // the global and any stores that remain to it. const DenseMap &TG = Solver.getTrackedGlobals();