IR: Rewrite ConstantUniqueMap

Rewrite `ConstantUniqueMap` to be more similar to
`ConstantAggrUniqueMap`.

  - Use a `DenseMap` with custom MapInfo instead of a `std::map` with
    linear lookups and deletion.
  - Don't waste memory explicitly storing (heavyweight) keys.

Only `ConstantExpr` and `InlineAsm` actually use this data structure, so
I also updated them to use it.

This code cleanup is a precursor to reducing RAUW traffic on
`ConstantExpr` -- I felt badly adding a new (linear) call to
`ConstantUniqueMap::FindExistingKey`, so this designs away the concern.

A follow-up commit will transition the users of `ConstantAggrUniqueMap`
over.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215957 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Duncan P. N. Exon Smith 2014-08-19 00:42:32 +00:00
parent 79f9f85c04
commit 78c0b35bf7
5 changed files with 221 additions and 274 deletions

View File

@ -25,12 +25,9 @@ namespace llvm {
class PointerType;
class FunctionType;
class Module;
struct InlineAsmKeyType;
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
bool HasLargeKey>
class ConstantUniqueMap;
template<class ConstantClass, class TypeClass, class ValType>
struct ConstantCreator;
template <class ConstantClass> class ConstantUniqueMap;
class InlineAsm : public Value {
public:
@ -40,9 +37,8 @@ public:
};
private:
friend struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType>;
friend class ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&,
PointerType, InlineAsm, false>;
friend struct InlineAsmKeyType;
friend class ConstantUniqueMap<InlineAsm>;
InlineAsm(const InlineAsm &) LLVM_DELETED_FUNCTION;
void operator=(const InlineAsm&) LLVM_DELETED_FUNCTION;

View File

@ -1507,7 +1507,7 @@ static inline Constant *getFoldedCast(
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness.
ExprMapKeyType Key(opc, C);
ConstantExprKeyType Key(opc, C);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
@ -1842,7 +1842,7 @@ Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
return FC; // Fold a few common cases.
Constant *ArgVec[] = { C1, C2 };
ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
@ -1919,7 +1919,7 @@ Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
return SC; // Fold common cases
Constant *ArgVec[] = { C, V1, V2 };
ExprMapKeyType Key(Instruction::Select, ArgVec);
ConstantExprKeyType Key(Instruction::Select, ArgVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
@ -1954,8 +1954,8 @@ Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
"getelementptr index type missmatch");
ArgVec.push_back(cast<Constant>(Idxs[i]));
}
const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
InBounds ? GEPOperator::IsInBounds : 0);
const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
InBounds ? GEPOperator::IsInBounds : 0);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
@ -1973,7 +1973,7 @@ ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
@ -1994,7 +1994,7 @@ ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
@ -2015,7 +2015,7 @@ Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Idx };
const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
Type *ReqTy = Val->getType()->getVectorElementType();
@ -2035,7 +2035,7 @@ Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Elt, Idx };
const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
@ -2055,7 +2055,7 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { V1, V2, Mask };
const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
@ -2075,7 +2075,7 @@ Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
return FC;
Constant *ArgVec[] = { Agg, Val };
const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
@ -2096,7 +2096,7 @@ Constant *ConstantExpr::getExtractValue(Constant *Agg,
return FC;
Constant *ArgVec[] = { Agg };
const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);

View File

@ -314,66 +314,148 @@ struct OperandTraits<CompareConstantExpr> :
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
struct ExprMapKeyType {
ExprMapKeyType(unsigned opc,
ArrayRef<Constant*> ops,
unsigned short flags = 0,
unsigned short optionalflags = 0,
ArrayRef<unsigned> inds = None)
: opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
uint8_t opcode;
uint8_t subclassoptionaldata;
uint16_t subclassdata;
std::vector<Constant*> operands;
SmallVector<unsigned, 4> indices;
bool operator==(const ExprMapKeyType& that) const {
return this->opcode == that.opcode &&
this->subclassdata == that.subclassdata &&
this->subclassoptionaldata == that.subclassoptionaldata &&
this->operands == that.operands &&
this->indices == that.indices;
}
bool operator<(const ExprMapKeyType & that) const {
return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
indices) <
std::tie(that.opcode, that.operands, that.subclassdata,
that.subclassoptionaldata, that.indices);
}
struct InlineAsmKeyType;
struct ConstantExprKeyType;
bool operator!=(const ExprMapKeyType& that) const {
return !(*this == that);
}
template <class ConstantClass> struct ConstantInfo;
template <> struct ConstantInfo<ConstantExpr> {
typedef ConstantExprKeyType ValType;
typedef Type TypeClass;
};
template <> struct ConstantInfo<InlineAsm> {
typedef InlineAsmKeyType ValType;
typedef PointerType TypeClass;
};
struct InlineAsmKeyType {
InlineAsmKeyType(StringRef AsmString,
StringRef Constraints, bool hasSideEffects,
bool isAlignStack, InlineAsm::AsmDialect asmDialect)
: asm_string(AsmString), constraints(Constraints),
has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
asm_dialect(asmDialect) {}
std::string asm_string;
std::string constraints;
bool has_side_effects;
bool is_align_stack;
InlineAsm::AsmDialect asm_dialect;
bool operator==(const InlineAsmKeyType& that) const {
return this->asm_string == that.asm_string &&
this->constraints == that.constraints &&
this->has_side_effects == that.has_side_effects &&
this->is_align_stack == that.is_align_stack &&
this->asm_dialect == that.asm_dialect;
StringRef AsmString;
StringRef Constraints;
bool HasSideEffects;
bool IsAlignStack;
InlineAsm::AsmDialect AsmDialect;
InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
bool HasSideEffects, bool IsAlignStack,
InlineAsm::AsmDialect AsmDialect)
: AsmString(AsmString), Constraints(Constraints),
HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
AsmDialect(AsmDialect) {}
InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
: AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
HasSideEffects(Asm->hasSideEffects()),
IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
bool operator==(const InlineAsmKeyType &X) const {
return HasSideEffects == X.HasSideEffects &&
IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
AsmString == X.AsmString && Constraints == X.Constraints;
}
bool operator<(const InlineAsmKeyType& that) const {
return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
asm_dialect) <
std::tie(that.asm_string, that.constraints, that.has_side_effects,
that.is_align_stack, that.asm_dialect);
bool operator==(const InlineAsm *Asm) const {
return HasSideEffects == Asm->hasSideEffects() &&
IsAlignStack == Asm->isAlignStack() &&
AsmDialect == Asm->getDialect() &&
AsmString == Asm->getAsmString() &&
Constraints == Asm->getConstraintString();
}
unsigned getHash() const {
return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
AsmDialect);
}
bool operator!=(const InlineAsmKeyType& that) const {
return !(*this == that);
typedef typename ConstantInfo<InlineAsm>::TypeClass TypeClass;
InlineAsm *create(TypeClass *Ty) const {
return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
IsAlignStack, AsmDialect);
}
};
struct ConstantExprKeyType {
uint8_t Opcode;
uint8_t SubclassOptionalData;
uint16_t SubclassData;
ArrayRef<Constant *> Ops;
ArrayRef<unsigned> Indexes;
ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
unsigned short SubclassData = 0,
unsigned short SubclassOptionalData = 0,
ArrayRef<unsigned> Indexes = None)
: Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
ConstantExprKeyType(const ConstantExpr *CE,
SmallVectorImpl<Constant *> &Storage)
: Opcode(CE->getOpcode()),
SubclassOptionalData(CE->getRawSubclassOptionalData()),
SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
assert(Storage.empty() && "Expected empty storage");
for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
Storage.push_back(CE->getOperand(I));
Ops = Storage;
}
bool operator==(const ConstantExprKeyType &X) const {
return Opcode == X.Opcode && SubclassData == X.SubclassData &&
SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
Indexes == X.Indexes;
}
bool operator==(const ConstantExpr *CE) const {
if (Opcode != CE->getOpcode())
return false;
if (SubclassOptionalData != CE->getRawSubclassOptionalData())
return false;
if (Ops.size() != CE->getNumOperands())
return false;
if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
return false;
for (unsigned I = 0, E = Ops.size(); I != E; ++I)
if (Ops[I] != CE->getOperand(I))
return false;
if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
return false;
return true;
}
unsigned getHash() const {
return hash_combine(Opcode, SubclassOptionalData, SubclassData,
hash_combine_range(Ops.begin(), Ops.end()),
hash_combine_range(Indexes.begin(), Indexes.end()));
}
typedef typename ConstantInfo<ConstantExpr>::TypeClass TypeClass;
ConstantExpr *create(TypeClass *Ty) const {
switch (Opcode) {
default:
if (Instruction::isCast(Opcode))
return new UnaryConstantExpr(Opcode, Ops[0], Ty);
if ((Opcode >= Instruction::BinaryOpsBegin &&
Opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
SubclassOptionalData);
llvm_unreachable("Invalid ConstantExpr!");
case Instruction::Select:
return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return new ExtractElementConstantExpr(Ops[0], Ops[1]);
case Instruction::InsertElement:
return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
case Instruction::InsertValue:
return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
case Instruction::ExtractValue:
return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
case Instruction::GetElementPtr:
return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
SubclassOptionalData);
case Instruction::ICmp:
return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
Ops[0], Ops[1]);
case Instruction::FCmp:
return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
Ops[0], Ops[1]);
}
}
};
@ -412,228 +494,99 @@ struct ConstantArrayCreator {
}
};
template<class ConstantClass>
struct ConstantKeyData {
typedef void ValType;
static ValType getValType(ConstantClass *C) {
llvm_unreachable("Unknown Constant type!");
}
};
template<>
struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
unsigned short pred = 0) {
if (Instruction::isCast(V.opcode))
return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
if ((V.opcode >= Instruction::BinaryOpsBegin &&
V.opcode < Instruction::BinaryOpsEnd))
return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
V.subclassoptionaldata);
if (V.opcode == Instruction::Select)
return new SelectConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ExtractElement)
return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
if (V.opcode == Instruction::InsertElement)
return new InsertElementConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::ShuffleVector)
return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
V.operands[2]);
if (V.opcode == Instruction::InsertValue)
return new InsertValueConstantExpr(V.operands[0], V.operands[1],
V.indices, Ty);
if (V.opcode == Instruction::ExtractValue)
return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
if (V.opcode == Instruction::GetElementPtr) {
std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
V.subclassoptionaldata);
}
// The compare instructions are weird. We have to encode the predicate
// value and it is combined with the instruction opcode by multiplying
// the opcode by one hundred. We must decode this to get the predicate.
if (V.opcode == Instruction::ICmp)
return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
V.operands[0], V.operands[1]);
if (V.opcode == Instruction::FCmp)
return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
V.operands[0], V.operands[1]);
llvm_unreachable("Invalid ConstantExpr!");
}
};
template<>
struct ConstantKeyData<ConstantExpr> {
typedef ExprMapKeyType ValType;
static ValType getValType(ConstantExpr *CE) {
std::vector<Constant*> Operands;
Operands.reserve(CE->getNumOperands());
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
Operands.push_back(cast<Constant>(CE->getOperand(i)));
return ExprMapKeyType(CE->getOpcode(), Operands,
CE->isCompare() ? CE->getPredicate() : 0,
CE->getRawSubclassOptionalData(),
CE->hasIndices() ?
CE->getIndices() : ArrayRef<unsigned>());
}
};
template<>
struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
return new InlineAsm(Ty, Key.asm_string, Key.constraints,
Key.has_side_effects, Key.is_align_stack,
Key.asm_dialect);
}
};
template<>
struct ConstantKeyData<InlineAsm> {
typedef InlineAsmKeyType ValType;
static ValType getValType(InlineAsm *Asm) {
return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
Asm->hasSideEffects(), Asm->isAlignStack(),
Asm->getDialect());
}
};
template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
bool HasLargeKey = false /*true for arrays and structs*/ >
class ConstantUniqueMap {
template <class ConstantClass> class ConstantUniqueMap {
public:
typedef std::pair<TypeClass*, ValType> MapKey;
typedef std::map<MapKey, ConstantClass *> MapTy;
typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
typedef typename ConstantInfo<ConstantClass>::ValType ValType;
typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
typedef std::pair<TypeClass *, ValType> LookupKey;
private:
struct MapInfo {
typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
static inline ConstantClass *getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
static inline ConstantClass *getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
SmallVector<Constant *, 8> Storage;
return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
return hash_combine(Val.first, Val.second.getHash());
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
if (LHS.first != RHS->getType())
return false;
return LHS.second == RHS;
}
};
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
/// Map - This is the main map from the element descriptor to the Constants.
/// This is the primary way we avoid creating two of the same shape
/// constant.
MapTy Map;
/// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
/// from the constants to their element in Map. This is important for
/// removal of constants from the array, which would otherwise have to scan
/// through the map with very large keys.
InverseMapTy InverseMap;
public:
typename MapTy::iterator map_begin() { return Map.begin(); }
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
for (typename MapTy::iterator I=Map.begin(), E=Map.end();
I != E; ++I) {
for (auto &I : Map)
// Asserts that use_empty().
delete I->second;
}
}
/// InsertOrGetItem - Return an iterator for the specified element.
/// If the element exists in the map, the returned iterator points to the
/// entry and Exists=true. If not, the iterator points to the newly
/// inserted entry and returns Exists=false. Newly inserted entries have
/// I->second == 0, and should be filled in.
typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
&InsertVal,
bool &Exists) {
std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
Exists = !IP.second;
return IP.first;
}
private:
typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
if (HasLargeKey) {
typename InverseMapTy::iterator IMI = InverseMap.find(CP);
assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
IMI->second->second == CP &&
"InverseMap corrupt!");
return IMI->second;
}
typename MapTy::iterator I =
Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
ConstantKeyData<ConstantClass>::getValType(CP)));
if (I == Map.end() || I->second != CP) {
// FIXME: This should not use a linear scan. If this gets to be a
// performance problem, someone should look at this.
for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
/* empty */;
}
return I;
delete I.first;
}
ConstantClass *Create(TypeClass *Ty, ValRefType V,
typename MapTy::iterator I) {
ConstantClass* Result =
ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
private:
ConstantClass *create(TypeClass *Ty, ValType V) {
ConstantClass *Result = V.create(Ty);
assert(Result->getType() == Ty && "Type specified is not correct!");
I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.insert(std::make_pair(Result, I));
insert(Result);
return Result;
}
public:
/// getOrCreate - Return the specified constant from the map, creating it if
/// necessary.
ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
MapKey Lookup(Ty, V);
ConstantClass* Result = nullptr;
typename MapTy::iterator I = Map.find(Lookup);
// Is it in the map?
if (I != Map.end())
Result = I->second;
if (!Result) {
// If no preexisting value, create one now...
Result = Create(Ty, V, I);
}
/// Return the specified constant from the map, creating it if necessary.
ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
LookupKey Lookup(Ty, V);
ConstantClass *Result = nullptr;
auto I = find(Lookup);
if (I == Map.end())
Result = create(Ty, V);
else
Result = I->first;
assert(Result && "Unexpected nullptr");
return Result;
}
/// Find the constant by lookup key.
typename MapTy::iterator find(LookupKey Lookup) {
return Map.find_as(Lookup);
}
/// Insert the constant into its proper slot.
void insert(ConstantClass *CP) { Map[CP] = '\0'; }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
typename MapTy::iterator I = FindExistingElement(CP);
typename MapTy::iterator I = Map.find(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->second == CP && "Didn't find correct element?");
if (HasLargeKey) // Remember the reverse mapping if needed.
InverseMap.erase(CP);
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
/// MoveConstantToNewSlot - If we are about to change C to be the element
/// specified by I, update our internal data structures to reflect this
/// fact.
void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
// First, remove the old location of the specified constant in the map.
typename MapTy::iterator OldI = FindExistingElement(C);
assert(OldI != Map.end() && "Constant not found in constant table!");
assert(OldI->second == C && "Didn't find correct element?");
// Remove the old entry from the map.
Map.erase(OldI);
// Update the inverse map so that we know that this constant is now
// located at descriptor I.
if (HasLargeKey) {
assert(I->second == C && "Bad inversemap entry!");
InverseMap[C] = I;
}
}
void dump() const {
DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
}
void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
};
// Unique map for aggregate constants

View File

@ -75,7 +75,7 @@ LLVMContextImpl::~LLVMContextImpl() {
// Free the constants. This is important to do here to ensure that they are
// freed before the LeakDetector is torn down.
std::for_each(ExprConstants.map_begin(), ExprConstants.map_end(),
DropReferences());
DropFirst());
std::for_each(ArrayConstants.map_begin(), ArrayConstants.map_end(),
DropFirst());
std::for_each(StructConstants.map_begin(), StructConstants.map_end(),

View File

@ -289,11 +289,9 @@ public:
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
ExprConstants;
ConstantUniqueMap<ConstantExpr> ExprConstants;
ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
InlineAsm> InlineAsms;
ConstantUniqueMap<InlineAsm> InlineAsms;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;