[msan] Fix handling of multiplication by a constant with a number of trailing zeroes.

Multiplication by an integer with a number of trailing zero bits leaves
the same number of lower bits of the result initialized to zero.
This change makes MSan take this into account in the case of multiplication by
a compile-time constant.

We don't handle the general, non-constant, case because
(a) it's not going to be cheap (computation-wise);
(b) multiplication by a partially uninitialized value in user code is
    a bad idea anyway.

Constant case must be handled because it appears from LLVM optimization of a
completely valid user code, as the test case in compiler-rt demonstrates.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211092 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evgeniy Stepanov 2014-06-17 09:23:12 +00:00
parent feacf82180
commit 792a173523
2 changed files with 143 additions and 1 deletions

View File

@ -1397,13 +1397,61 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
SC.Done(&I);
}
// \brief Handle multiplication by constant.
//
// Handle a special case of multiplication by constant that may have one or
// more zeros in the lower bits. This makes corresponding number of lower bits
// of the result zero as well. We model it by shifting the other operand
// shadow left by the required number of bits. Effectively, we transform
// (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
// We use multiplication by 2**N instead of shift to cover the case of
// multiplication by 0, which may occur in some elements of a vector operand.
void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
Value *OtherArg) {
Constant *ShadowMul;
Type *Ty = ConstArg->getType();
if (Ty->isVectorTy()) {
unsigned NumElements = Ty->getVectorNumElements();
Type *EltTy = Ty->getSequentialElementType();
SmallVector<Constant *, 16> Elements;
for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
ConstantInt *Elt =
dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
APInt V = Elt->getValue();
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
Elements.push_back(ConstantInt::get(EltTy, V2));
}
ShadowMul = ConstantVector::get(Elements);
} else {
ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
APInt V = Elt->getValue();
APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
ShadowMul = ConstantInt::get(Elt->getType(), V2);
}
IRBuilder<> IRB(&I);
setShadow(&I,
IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
setOrigin(&I, getOrigin(OtherArg));
}
void visitMul(BinaryOperator &I) {
Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
if (constOp0 && !constOp1)
handleMulByConstant(I, constOp0, I.getOperand(1));
else if (constOp1 && !constOp0)
handleMulByConstant(I, constOp1, I.getOperand(0));
else
handleShadowOr(I);
}
void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
void visitSub(BinaryOperator &I) { handleShadowOr(I); }
void visitXor(BinaryOperator &I) { handleShadowOr(I); }
void visitMul(BinaryOperator &I) { handleShadowOr(I); }
void handleDiv(Instruction &I) {
IRBuilder<> IRB(&I);

View File

@ -0,0 +1,94 @@
; RUN: opt < %s -msan -msan-check-access-address=0 -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
; Check instrumentation mul when one of the operands is a constant.
define i64 @MulConst(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, 42949672960000
ret i64 %y
}
; 42949672960000 = 2**32 * 10000
; 36 trailing zero bits
; 68719476736 = 2**36
; CHECK-LABEL: @MulConst(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], 68719476736
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define i64 @MulZero(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, 0
ret i64 %y
}
; CHECK-LABEL: @MulZero(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], 0{{$}}
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define i64 @MulNeg(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, -16
ret i64 %y
}
; CHECK-LABEL: @MulNeg(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], 16
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define i64 @MulNeg2(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, -48
ret i64 %y
}
; CHECK-LABEL: @MulNeg2(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], 16
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define i64 @MulOdd(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, 12345
ret i64 %y
}
; CHECK-LABEL: @MulOdd(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], 1
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define i64 @MulLarge(i64 %x) sanitize_memory {
entry:
%y = mul i64 %x, -9223372036854775808
ret i64 %y
}
; -9223372036854775808 = 0x7000000000000000
; CHECK-LABEL: @MulLarge(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul i64 [[A]], -9223372036854775808
; CHECK: store i64 [[B]], i64* {{.*}} @__msan_retval_tls
define <4 x i32> @MulVectorConst(<4 x i32> %x) sanitize_memory {
entry:
%y = mul <4 x i32> %x, <i32 3072, i32 0, i32 -16, i32 -48>
ret <4 x i32> %y
}
; CHECK-LABEL: @MulVectorConst(
; CHECK: [[A:%.*]] = load {{.*}} @__msan_param_tls
; CHECK: [[B:%.*]] = mul <4 x i32> [[A]], <i32 1024, i32 0, i32 16, i32 16>
; CHECK: store <4 x i32> [[B]], <4 x i32>* {{.*}} @__msan_retval_tls