diff --git a/lib/Target/X86/X86ISelLowering.cpp b/lib/Target/X86/X86ISelLowering.cpp index 2f91b520af0..3c01b5043e1 100644 --- a/lib/Target/X86/X86ISelLowering.cpp +++ b/lib/Target/X86/X86ISelLowering.cpp @@ -66,7 +66,7 @@ static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, DebugLoc dl) { EVT VT = Vec.getValueType(); - assert(VT.getSizeInBits() == 256 && "Unexpected vector size!"); + assert(VT.is256BitVector() && "Unexpected vector size!"); EVT ElVT = VT.getVectorElementType(); unsigned Factor = VT.getSizeInBits()/128; EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, @@ -105,7 +105,7 @@ static SDValue Insert128BitVector(SDValue Result, SDValue Vec, return Result; EVT VT = Vec.getValueType(); - assert(VT.getSizeInBits() == 128 && "Unexpected vector size!"); + assert(VT.is128BitVector() && "Unexpected vector size!"); EVT ElVT = VT.getVectorElementType(); EVT ResultVT = Result.getValueType(); @@ -1891,9 +1891,9 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain, RC = &X86::FR32RegClass; else if (RegVT == MVT::f64) RC = &X86::FR64RegClass; - else if (RegVT.isVector() && RegVT.getSizeInBits() == 256) + else if (RegVT.is256BitVector()) RC = &X86::VR256RegClass; - else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) + else if (RegVT.is128BitVector()) RC = &X86::VR128RegClass; else if (RegVT == MVT::x86mmx) RC = &X86::VR64RegClass; @@ -2271,7 +2271,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); break; case CCValAssign::AExt: - if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { + if (RegVT.is128BitVector()) { // Special case: passing MMX values in XMM registers. Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); @@ -3414,11 +3414,11 @@ static bool isSHUFPMask(ArrayRef Mask, EVT VT, bool HasAVX, /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVHLPS. static bool isMOVHLPSMask(ArrayRef Mask, EVT VT) { - unsigned NumElems = VT.getVectorNumElements(); - - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; + unsigned NumElems = VT.getVectorNumElements(); + if (NumElems != 4) return false; @@ -3433,11 +3433,11 @@ static bool isMOVHLPSMask(ArrayRef Mask, EVT VT) { /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, /// <2, 3, 2, 3> static bool isMOVHLPS_v_undef_Mask(ArrayRef Mask, EVT VT) { - unsigned NumElems = VT.getVectorNumElements(); - - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; + unsigned NumElems = VT.getVectorNumElements(); + if (NumElems != 4) return false; @@ -3450,7 +3450,7 @@ static bool isMOVHLPS_v_undef_Mask(ArrayRef Mask, EVT VT) { /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. static bool isMOVLPMask(ArrayRef Mask, EVT VT) { - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; unsigned NumElems = VT.getVectorNumElements(); @@ -3472,10 +3472,12 @@ static bool isMOVLPMask(ArrayRef Mask, EVT VT) { /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a shuffle of elements that is suitable for input to MOVLHPS. static bool isMOVLHPSMask(ArrayRef Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + unsigned NumElems = VT.getVectorNumElements(); - if ((NumElems != 2 && NumElems != 4) - || VT.getSizeInBits() > 128) + if (NumElems != 2 && NumElems != 4) return false; for (unsigned i = 0, e = NumElems/2; i != e; ++i) @@ -3692,7 +3694,7 @@ static bool isUNPCKH_v_undef_Mask(ArrayRef Mask, EVT VT, bool HasAVX2) { static bool isMOVLMask(ArrayRef Mask, EVT VT) { if (VT.getVectorElementType().getSizeInBits() < 32) return false; - if (VT.getSizeInBits() == 256) + if (!VT.is128BitVector()) return false; unsigned NumElts = VT.getVectorNumElements(); @@ -3714,7 +3716,7 @@ static bool isMOVLMask(ArrayRef Mask, EVT VT) { /// The first half comes from the second half of V1 and the second half from the /// the second half of V2. static bool isVPERM2X128Mask(ArrayRef Mask, EVT VT, bool HasAVX) { - if (!HasAVX || VT.getSizeInBits() != 256) + if (!HasAVX || !VT.is256BitVector()) return false; // The shuffle result is divided into half A and half B. In total the two @@ -3806,9 +3808,10 @@ static bool isVPERMILPMask(ArrayRef Mask, EVT VT, bool HasAVX) { /// element of vector 2 and the other elements to come from vector 1 in order. static bool isCommutedMOVLMask(ArrayRef Mask, EVT VT, bool V2IsSplat = false, bool V2IsUndef = false) { - unsigned NumOps = VT.getVectorNumElements(); - if (VT.getSizeInBits() == 256) + if (!VT.is128BitVector()) return false; + + unsigned NumOps = VT.getVectorNumElements(); if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) return false; @@ -3874,9 +3877,11 @@ static bool isMOVSLDUPMask(ArrayRef Mask, EVT VT, /// specifies a shuffle of elements that is suitable for input to 256-bit /// version of MOVDDUP. static bool isMOVDDUPYMask(ArrayRef Mask, EVT VT, bool HasAVX) { - unsigned NumElts = VT.getVectorNumElements(); + if (!HasAVX || !VT.is256BitVector()) + return false; - if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4) + unsigned NumElts = VT.getVectorNumElements(); + if (NumElts != 4) return false; for (unsigned i = 0; i != NumElts/2; ++i) @@ -3892,7 +3897,7 @@ static bool isMOVDDUPYMask(ArrayRef Mask, EVT VT, bool HasAVX) { /// specifies a shuffle of elements that is suitable for input to 128-bit /// version of MOVDDUP. static bool isMOVDDUPMask(ArrayRef Mask, EVT VT) { - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; unsigned e = VT.getVectorNumElements() / 2; @@ -4137,7 +4142,7 @@ static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, /// V1 (and in order), and the upper half elements should come from the upper /// half of V2 (and in order). static bool ShouldXformToMOVHLPS(ArrayRef Mask, EVT VT) { - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; if (VT.getVectorNumElements() != 4) return false; @@ -4194,7 +4199,7 @@ static bool WillBeConstantPoolLoad(SDNode *N) { /// MOVLP, it must be either a vector load or a scalar load to vector. static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, ArrayRef Mask, EVT VT) { - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return false; if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) @@ -4736,7 +4741,7 @@ static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { // Although the logic below support any bitwidth size, there are no // shift instructions which handle more than 128-bit vectors. - if (SVOp->getValueType(0).getSizeInBits() > 128) + if (!SVOp->getValueType(0).is128BitVector()) return false; if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || @@ -4831,7 +4836,7 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits, SelectionDAG &DAG, const TargetLowering &TLI, DebugLoc dl) { - assert(VT.getSizeInBits() == 128 && "Unknown type for VShift"); + assert(VT.is128BitVector() && "Unknown type for VShift"); EVT ShVT = MVT::v2i64; unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); @@ -5064,7 +5069,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const { } } - bool Is256 = VT.getSizeInBits() == 256; + bool Is256 = VT.is256BitVector(); // Handle the broadcasting a single constant scalar from the constant pool // into a vector. On Sandybridge it is still better to load a constant vector @@ -5226,12 +5231,12 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || (ExtVT == MVT::i64 && Subtarget->is64Bit())) { - if (VT.getSizeInBits() == 256) { + if (VT.is256BitVector()) { SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, Item, DAG.getIntPtrConstant(0)); } - assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!"); + assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); @@ -5240,11 +5245,11 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); - if (VT.getSizeInBits() == 256) { + if (VT.is256BitVector()) { SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); } else { - assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!"); + assert(VT.is128BitVector() && "Expected an SSE value type!"); Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); } return DAG.getNode(ISD::BITCAST, dl, VT, Item); @@ -5304,7 +5309,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { // For AVX-length vectors, build the individual 128-bit pieces and use // shuffles to put them in place. - if (VT.getSizeInBits() == 256) { + if (VT.is256BitVector()) { SmallVector V; for (unsigned i = 0; i != NumElems; ++i) V.push_back(Op.getOperand(i)); @@ -5385,7 +5390,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); } - if (Values.size() > 1 && VT.getSizeInBits() == 128) { + if (Values.size() > 1 && VT.is128BitVector()) { // Check for a build vector of consecutive loads. for (unsigned i = 0; i < NumElems; ++i) V[i] = Op.getOperand(i); @@ -5478,7 +5483,7 @@ static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { DebugLoc dl = Op.getDebugLoc(); EVT ResVT = Op.getValueType(); - assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide"); + assert(ResVT.is256BitVector() && "Value type must be 256-bit wide"); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); @@ -5492,7 +5497,7 @@ X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { EVT ResVT = Op.getValueType(); assert(Op.getNumOperands() == 2); - assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) && + assert((ResVT.is128BitVector() || ResVT.is256BitVector()) && "Unsupported CONCAT_VECTORS for value type"); // We support concatenate two MMX registers and place them in a MMX register. @@ -6148,7 +6153,7 @@ LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { DebugLoc dl = SVOp->getDebugLoc(); EVT VT = SVOp->getValueType(0); - assert(VT.getSizeInBits() == 128 && "Unsupported vector size"); + assert(VT.is128BitVector() && "Unsupported vector size"); std::pair Locs[4]; int Mask1[] = { -1, -1, -1, -1 }; @@ -6776,7 +6781,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { // Handle all 128-bit wide vectors with 4 elements, and match them with // several different shuffle types. - if (NumElems == 4 && VT.getSizeInBits() == 128) + if (NumElems == 4 && VT.is128BitVector()) return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); // Handle general 256-bit shuffles @@ -6792,7 +6797,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); - if (Op.getOperand(0).getValueType().getSizeInBits() != 128) + if (!Op.getOperand(0).getValueType().is128BitVector()) return SDValue(); if (VT.getSizeInBits() == 8) { @@ -6862,7 +6867,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, // If this is a 256-bit vector result, first extract the 128-bit vector and // then extract the element from the 128-bit vector. - if (VecVT.getSizeInBits() == 256) { + if (VecVT.is256BitVector()) { DebugLoc dl = Op.getNode()->getDebugLoc(); unsigned NumElems = VecVT.getVectorNumElements(); SDValue Idx = Op.getOperand(1); @@ -6877,7 +6882,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, DAG.getConstant(IdxVal, MVT::i32)); } - assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length"); + assert(VecVT.is128BitVector() && "Unexpected vector length"); if (Subtarget->hasSSE41()) { SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); @@ -6953,7 +6958,7 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); - if (VT.getSizeInBits() == 256) + if (!VT.is128BitVector()) return SDValue(); if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && @@ -7009,7 +7014,7 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { // If this is a 256-bit vector result, first extract the 128-bit vector, // insert the element into the extracted half and then place it back. - if (VT.getSizeInBits() == 256) { + if (VT.is256BitVector()) { if (!isa(N2)) return SDValue(); @@ -7053,7 +7058,7 @@ X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { // If this is a 256-bit vector result, first insert into a 128-bit // vector and then insert into the 256-bit vector. - if (OpVT.getSizeInBits() > 128) { + if (!OpVT.is128BitVector()) { // Insert into a 128-bit vector. EVT VT128 = EVT::getVectorVT(*Context, OpVT.getVectorElementType(), @@ -7070,7 +7075,7 @@ X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); - assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!"); + assert(OpVT.is128BitVector() && "Expected an SSE type!"); return DAG.getNode(ISD::BITCAST, dl, OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); } @@ -7085,8 +7090,8 @@ X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue Vec = Op.getNode()->getOperand(0); SDValue Idx = Op.getNode()->getOperand(1); - if (Op.getNode()->getValueType(0).getSizeInBits() == 128 && - Vec.getNode()->getValueType(0).getSizeInBits() == 256 && + if (Op.getNode()->getValueType(0).is128BitVector() && + Vec.getNode()->getValueType(0).is256BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Extract128BitVector(Vec, IdxVal, DAG, dl); @@ -7106,8 +7111,8 @@ X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { SDValue SubVec = Op.getNode()->getOperand(1); SDValue Idx = Op.getNode()->getOperand(2); - if (Op.getNode()->getValueType(0).getSizeInBits() == 256 && - SubVec.getNode()->getValueType(0).getSizeInBits() == 128 && + if (Op.getNode()->getValueType(0).is256BitVector() && + SubVec.getNode()->getValueType(0).is128BitVector() && isa(Idx)) { unsigned IdxVal = cast(Idx)->getZExtValue(); return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); @@ -8115,7 +8120,7 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { MachinePointerInfo::getConstantPool(), false, false, false, 16); if (VT.isVector()) { - MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64; + MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; return DAG.getNode(ISD::BITCAST, dl, VT, DAG.getNode(ISD::XOR, dl, XORVT, DAG.getNode(ISD::BITCAST, dl, XORVT, @@ -8543,7 +8548,7 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); - assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC && + assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); @@ -8645,7 +8650,7 @@ SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { } // Break 256-bit integer vector compare into smaller ones. - if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()) + if (VT.is256BitVector() && !Subtarget->hasAVX2()) return Lower256IntVSETCC(Op, DAG); // We are handling one of the integer comparisons here. Since SSE only has @@ -10299,7 +10304,7 @@ SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { EVT VT = Op.getValueType(); - assert(VT.getSizeInBits() == 256 && VT.isInteger() && + assert(VT.is256BitVector() && VT.isInteger() && "Unsupported value type for operation"); unsigned NumElems = VT.getVectorNumElements(); @@ -10324,14 +10329,14 @@ static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { } SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const { - assert(Op.getValueType().getSizeInBits() == 256 && + assert(Op.getValueType().is256BitVector() && Op.getValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); } SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const { - assert(Op.getValueType().getSizeInBits() == 256 && + assert(Op.getValueType().is256BitVector() && Op.getValueType().isInteger() && "Only handle AVX 256-bit vector integer operation"); return Lower256IntArith(Op, DAG); @@ -10341,7 +10346,7 @@ SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); // Decompose 256-bit ops into smaller 128-bit ops. - if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()) + if (VT.is256BitVector() && !Subtarget->hasAVX2()) return Lower256IntArith(Op, DAG); assert((VT == MVT::v2i64 || VT == MVT::v4i64) && @@ -10571,7 +10576,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { } // Decompose 256-bit shifts into smaller 128-bit shifts. - if (VT.getSizeInBits() == 256) { + if (VT.is256BitVector()) { unsigned NumElems = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType().getSimpleVT(); EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); @@ -11482,7 +11487,7 @@ X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl &Mask, // FIXME: This collection of masks seems suspect. if (NumElts == 2) return true; - if (NumElts == 4 && VT.getSizeInBits() == 128) { + if (NumElts == 4 && VT.is128BitVector()) { return (isMOVLMask(Mask, VT) || isCommutedMOVLMask(Mask, VT, true) || isSHUFPMask(Mask, VT, Subtarget->hasAVX()) || @@ -13139,12 +13144,12 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, return SDValue(); // Combine 256-bit vector shuffles. This is only profitable when in AVX mode - if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 && + if (Subtarget->hasAVX() && VT.is256BitVector() && N->getOpcode() == ISD::VECTOR_SHUFFLE) return PerformShuffleCombine256(N, DAG, DCI, Subtarget); // Only handle 128 wide vector from here on. - if (VT.getSizeInBits() != 128) + if (!VT.is128BitVector()) return SDValue(); // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, @@ -14312,7 +14317,7 @@ static bool CanFoldXORWithAllOnes(const SDNode *N) { // Sometimes the operand may come from a insert_subvector building a 256-bit // allones vector - if (VT.getSizeInBits() == 256 && + if (VT.is256BitVector() && N->getOpcode() == ISD::INSERT_SUBVECTOR) { SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); @@ -14757,7 +14762,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, // On Sandy Bridge, 256-bit memory operations are executed by two // 128-bit ports. However, on Haswell it is better to issue a single 256-bit // memory operation. - if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2() && + if (VT.is256BitVector() && !Subtarget->hasAVX2() && StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS && StoredVal.getNumOperands() == 2) { SDValue Value0 = StoredVal.getOperand(0);