mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-15 23:31:37 +00:00
Scheduling now uses itinerary data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24180 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
be07f72ca2
commit
7d090f3485
@ -21,6 +21,7 @@
|
||||
#include "llvm/CodeGen/SSARegMap.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
#include "llvm/Target/TargetInstrInfo.h"
|
||||
#include "llvm/Target/TargetInstrItineraries.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
#include "llvm/Support/CommandLine.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
@ -32,6 +33,7 @@ namespace {
|
||||
enum ScheduleChoices {
|
||||
noScheduling,
|
||||
simpleScheduling,
|
||||
simpleNoItinScheduling
|
||||
};
|
||||
} // namespace
|
||||
|
||||
@ -43,6 +45,8 @@ cl::opt<ScheduleChoices> ScheduleStyle("sched",
|
||||
"Trivial emission with no analysis"),
|
||||
clEnumValN(simpleScheduling, "simple",
|
||||
"Minimize critical path and maximize processor utilization"),
|
||||
clEnumValN(simpleNoItinScheduling, "simple-noitin",
|
||||
"Same as simple except using generic latency"),
|
||||
clEnumValEnd));
|
||||
|
||||
|
||||
@ -97,65 +101,59 @@ private:
|
||||
typedef typename std::vector<T>::iterator Iter;
|
||||
// Tally iterator
|
||||
|
||||
/// AllInUse - Test to see if all of the resources in the slot are busy (set.)
|
||||
inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
|
||||
return (*Cursor & ResourceSet) == ResourceSet;
|
||||
/// SlotsAvailable - Returns the an iterator equal to Begin if all units
|
||||
/// are available. Otherwise return an iterator to a better Begin.
|
||||
Iter SlotsAvailable(Iter Begin, unsigned N, unsigned ResourceSet,
|
||||
unsigned &Resource) {
|
||||
assert(N && "Must check availability with N != 0");
|
||||
// Determine end of interval
|
||||
Iter End = Begin + N;
|
||||
// Alternate result
|
||||
Iter Better = End;
|
||||
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
||||
|
||||
// Iterate thru each resource
|
||||
BitsIterator<T> Resources(ResourceSet & ~*Begin);
|
||||
while (unsigned Res = Resources.Next()) {
|
||||
// Check if resource is available for next N slots
|
||||
Iter Interval = End;
|
||||
do {
|
||||
Interval--;
|
||||
if (*Interval & Res) break;
|
||||
} while (Interval != Begin);
|
||||
|
||||
// If available for N
|
||||
if (Interval == Begin) {
|
||||
// Success
|
||||
Resource = Res;
|
||||
return Begin;
|
||||
}
|
||||
if (Better > Interval) Better = Interval;
|
||||
}
|
||||
|
||||
// No luck
|
||||
return Better;
|
||||
}
|
||||
|
||||
/// FindAndReserveStages - Return true if the stages can be completed. If
|
||||
/// so mark as busy.
|
||||
bool FindAndReserveStages(Iter Begin,
|
||||
InstrStage *Stage, InstrStage *StageEnd) {
|
||||
// If at last stage then we're done
|
||||
if (Stage == StageEnd) return true;
|
||||
// Get number of cycles for current stage
|
||||
unsigned N = Stage->Cycles;
|
||||
// Check to see if N slots are available, if not fail
|
||||
unsigned Resource;
|
||||
if (SlotsAvailable(Begin, N, Stage->Units, Resource) != Begin) return false;
|
||||
// Check to see if remaining stages are available, if not fail
|
||||
if (!FindAndReserveStages(Begin + N, Stage + 1, StageEnd)) return false;
|
||||
// Reserve resource
|
||||
Reserve(Begin, N, Resource);
|
||||
// Success
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Skip - Skip over slots that use all of the specified resource (all are
|
||||
/// set.)
|
||||
Iter Skip(Iter Cursor, unsigned ResourceSet) {
|
||||
assert(ResourceSet && "At least one resource bit needs to bet set");
|
||||
|
||||
// Continue to the end
|
||||
while (true) {
|
||||
// Break out if one of the resource bits is not set
|
||||
if (!AllInUse(Cursor, ResourceSet)) return Cursor;
|
||||
// Try next slot
|
||||
Cursor++;
|
||||
assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
|
||||
}
|
||||
}
|
||||
|
||||
/// FindSlots - Starting from Begin, locate N consecutive slots where at least
|
||||
/// one of the resource bits is available. Returns the address of first slot.
|
||||
Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
|
||||
unsigned &Resource) {
|
||||
// Track position
|
||||
Iter Cursor = Begin;
|
||||
|
||||
// Try all possible slots forward
|
||||
while (true) {
|
||||
// Skip full slots
|
||||
Cursor = Skip(Cursor, ResourceSet);
|
||||
// Determine end of interval
|
||||
Iter End = Cursor + N;
|
||||
assert(End <= Tally.end() && "Tally is not large enough for schedule");
|
||||
|
||||
// Iterate thru each resource
|
||||
BitsIterator<T> Resources(ResourceSet & ~*Cursor);
|
||||
while (unsigned Res = Resources.Next()) {
|
||||
// Check if resource is available for next N slots
|
||||
// Break out if resource is busy
|
||||
Iter Interval = Cursor;
|
||||
for (; Interval < End && !(*Interval & Res); Interval++) {}
|
||||
|
||||
// If available for interval, return where and which resource
|
||||
if (Interval == End) {
|
||||
Resource = Res;
|
||||
return Cursor;
|
||||
}
|
||||
// Otherwise, check if worth checking other resources
|
||||
if (AllInUse(Interval, ResourceSet)) {
|
||||
// Start looking beyond interval
|
||||
Cursor = Interval;
|
||||
break;
|
||||
}
|
||||
}
|
||||
Cursor++;
|
||||
}
|
||||
}
|
||||
|
||||
/// Reserve - Mark busy (set) the specified N slots.
|
||||
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
|
||||
// Determine end of interval
|
||||
@ -167,24 +165,35 @@ private:
|
||||
*Begin |= Resource;
|
||||
}
|
||||
|
||||
/// FindSlots - Starting from Begin, locate consecutive slots where all stages
|
||||
/// can be completed. Returns the address of first slot.
|
||||
Iter FindSlots(Iter Begin, InstrStage *StageBegin, InstrStage *StageEnd) {
|
||||
// Track position
|
||||
Iter Cursor = Begin;
|
||||
|
||||
// Try all possible slots forward
|
||||
while (true) {
|
||||
// Try at cursor, if successful return position.
|
||||
if (FindAndReserveStages(Cursor, StageBegin, StageEnd)) return Cursor;
|
||||
// Locate a better position
|
||||
unsigned Resource;
|
||||
Cursor = SlotsAvailable(Cursor + 1, StageBegin->Cycles, StageBegin->Units,
|
||||
Resource);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/// Initialize - Resize and zero the tally to the specified number of time
|
||||
/// slots.
|
||||
inline void Initialize(unsigned N) {
|
||||
Tally.assign(N, 0); // Initialize tally to all zeros.
|
||||
}
|
||||
|
||||
// FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
|
||||
// ResourceSet for choices.
|
||||
unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
|
||||
// Which resource used
|
||||
unsigned Resource;
|
||||
// Find slots for instruction.
|
||||
Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
|
||||
// Reserve the slots
|
||||
Reserve(Where, N, Resource);
|
||||
// Return time slot (index)
|
||||
return Where - Tally.begin();
|
||||
|
||||
// FindAndReserve - Locate an ideal slot for the specified stages and mark
|
||||
// as busy.
|
||||
unsigned FindAndReserve(unsigned Slot, InstrStage *StageBegin,
|
||||
InstrStage *StageEnd) {
|
||||
return FindSlots(Tally.begin() + Slot, StageBegin, StageEnd)-Tally.begin();
|
||||
}
|
||||
|
||||
};
|
||||
@ -203,17 +212,20 @@ typedef std::vector<NodeInfoPtr>::iterator NIIterator;
|
||||
class NodeGroup {
|
||||
private:
|
||||
NIVector Members; // Group member nodes
|
||||
NodeInfo *Dominator; // Node with highest latency
|
||||
unsigned Latency; // Total latency of the group
|
||||
int Pending; // Number of visits pending before
|
||||
// adding to order
|
||||
|
||||
public:
|
||||
// Ctor.
|
||||
NodeGroup() : Pending(0) {}
|
||||
NodeGroup() : Dominator(NULL), Pending(0) {}
|
||||
|
||||
// Accessors
|
||||
inline NodeInfo *getLeader() {
|
||||
return Members.empty() ? NULL : Members.front();
|
||||
}
|
||||
inline void setDominator(NodeInfo *D) { Dominator = D; }
|
||||
inline NodeInfo *getDominator() { return Dominator; }
|
||||
inline void setLatency(unsigned L) { Latency = L; }
|
||||
inline unsigned getLatency() { return Latency; }
|
||||
inline int getPending() const { return Pending; }
|
||||
inline void setPending(int P) { Pending = P; }
|
||||
inline int addPending(int I) { return Pending += I; }
|
||||
@ -246,8 +258,9 @@ private:
|
||||
// adding to order
|
||||
public:
|
||||
SDNode *Node; // DAG node
|
||||
unsigned Latency; // Cycles to complete instruction
|
||||
unsigned ResourceSet; // Bit vector of usable resources
|
||||
InstrStage *StageBegin; // First stage in itinerary
|
||||
InstrStage *StageEnd; // Last+1 stage in itinerary
|
||||
unsigned Latency; // Total cycles to complete instruction
|
||||
bool IsCall; // Is function call
|
||||
unsigned Slot; // Node's time slot
|
||||
NodeGroup *Group; // Grouping information
|
||||
@ -260,8 +273,9 @@ public:
|
||||
NodeInfo(SDNode *N = NULL)
|
||||
: Pending(0)
|
||||
, Node(N)
|
||||
, StageBegin(NULL)
|
||||
, StageEnd(NULL)
|
||||
, Latency(0)
|
||||
, ResourceSet(0)
|
||||
, IsCall(false)
|
||||
, Slot(0)
|
||||
, Group(NULL)
|
||||
@ -276,8 +290,8 @@ public:
|
||||
assert(!Group || !Group->group_empty() && "Group with no members");
|
||||
return Group != NULL;
|
||||
}
|
||||
inline bool isGroupLeader() const {
|
||||
return isInGroup() && Group->getLeader() == this;
|
||||
inline bool isGroupDominator() const {
|
||||
return isInGroup() && Group->getDominator() == this;
|
||||
}
|
||||
inline int getPending() const {
|
||||
return Group ? Group->getPending() : Pending;
|
||||
@ -391,15 +405,6 @@ public:
|
||||
///
|
||||
class SimpleSched {
|
||||
private:
|
||||
// TODO - get ResourceSet from TII
|
||||
enum {
|
||||
RSInteger = 0x3, // Two integer units
|
||||
RSFloat = 0xC, // Two float units
|
||||
RSLoadStore = 0x30, // Two load store units
|
||||
RSBranch = 0x400, // One branch unit
|
||||
RSOther = 0 // Processing unit independent
|
||||
};
|
||||
|
||||
MachineBasicBlock *BB; // Current basic block
|
||||
SelectionDAG &DAG; // DAG of the current basic block
|
||||
const TargetMachine &TM; // Target processor
|
||||
@ -408,6 +413,7 @@ private:
|
||||
SSARegMap *RegMap; // Virtual/real register map
|
||||
MachineConstantPool *ConstPool; // Target constant pool
|
||||
unsigned NodeCount; // Number of nodes in DAG
|
||||
bool HasGroups; // True if there are any groups
|
||||
NodeInfo *Info; // Info for nodes being scheduled
|
||||
std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
|
||||
NIVector Ordering; // Emit ordering of nodes
|
||||
@ -422,7 +428,7 @@ public:
|
||||
: BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
|
||||
MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
|
||||
ConstPool(BB->getParent()->getConstantPool()),
|
||||
NodeCount(0), Info(NULL), Map(), Tally(), NSlots(0) {
|
||||
NodeCount(0), HasGroups(false), Info(NULL), Map(), Tally(), NSlots(0) {
|
||||
assert(&TII && "Target doesn't provide instr info?");
|
||||
assert(&MRI && "Target doesn't provide register info?");
|
||||
}
|
||||
@ -455,6 +461,7 @@ private:
|
||||
void Schedule();
|
||||
void IdentifyGroups();
|
||||
void GatherSchedulingInfo();
|
||||
void FakeGroupDominators();
|
||||
void PrepareNodeInfo();
|
||||
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
|
||||
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
|
||||
@ -474,6 +481,27 @@ private:
|
||||
inline void dump(const char *tag) const { std::cerr << tag; dump(); }
|
||||
void dump() const;
|
||||
};
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// Special case itineraries.
|
||||
///
|
||||
enum {
|
||||
CallLatency = 40, // To push calls back in time
|
||||
|
||||
RSInteger = 0xC0000000, // Two integer units
|
||||
RSFloat = 0x30000000, // Two float units
|
||||
RSLoadStore = 0x0C000000, // Two load store units
|
||||
RSBranch = 0x02000000 // One branch unit
|
||||
};
|
||||
static InstrStage CallStage = { CallLatency, RSBranch };
|
||||
static InstrStage LoadStage = { 5, RSLoadStore };
|
||||
static InstrStage StoreStage = { 2, RSLoadStore };
|
||||
static InstrStage IntStage = { 2, RSInteger };
|
||||
static InstrStage FloatStage = { 3, RSFloat };
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
} // namespace
|
||||
@ -619,7 +647,7 @@ if (Node->getOpcode() == ISD::EntryToken) return;
|
||||
if (!Count) {
|
||||
// Add node
|
||||
if (NI->isInGroup()) {
|
||||
Ordering.push_back(NI->Group->getLeader());
|
||||
Ordering.push_back(NI->Group->getDominator());
|
||||
} else {
|
||||
Ordering.push_back(NI);
|
||||
}
|
||||
@ -680,6 +708,8 @@ void SimpleSched::IdentifyGroups() {
|
||||
if (Op.getValueType() != MVT::Flag) break;
|
||||
// Add to node group
|
||||
NodeGroup::Add(getNI(Op.Val), NI);
|
||||
// Let evryone else know
|
||||
HasGroups = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -687,8 +717,8 @@ void SimpleSched::IdentifyGroups() {
|
||||
/// GatherSchedulingInfo - Get latency and resource information about each node.
|
||||
///
|
||||
void SimpleSched::GatherSchedulingInfo() {
|
||||
// Track if groups are present
|
||||
bool AreGroups = false;
|
||||
|
||||
const InstrItineraryData InstrItins = TM.getInstrItineraryData();
|
||||
|
||||
// For each node
|
||||
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
||||
@ -696,90 +726,87 @@ void SimpleSched::GatherSchedulingInfo() {
|
||||
NodeInfo* NI = &Info[i];
|
||||
SDNode *Node = NI->Node;
|
||||
|
||||
// Test for groups
|
||||
if (NI->isInGroup()) AreGroups = true;
|
||||
// If there are itineraries and it is a machine instruction
|
||||
if (InstrItins.isEmpty() || ScheduleStyle == simpleNoItinScheduling) {
|
||||
// If machine opcode
|
||||
if (Node->isTargetOpcode()) {
|
||||
// Get return type to guess which processing unit
|
||||
MVT::ValueType VT = Node->getValueType(0);
|
||||
// Get machine opcode
|
||||
MachineOpCode TOpc = Node->getTargetOpcode();
|
||||
NI->IsCall = TII.isCall(TOpc);
|
||||
|
||||
// FIXME: Pretend by using value type to choose metrics
|
||||
MVT::ValueType VT = Node->getValueType(0);
|
||||
|
||||
// If machine opcode
|
||||
if (Node->isTargetOpcode()) {
|
||||
if (TII.isLoad(TOpc)) NI->StageBegin = &LoadStage;
|
||||
else if (TII.isStore(TOpc)) NI->StageBegin = &StoreStage;
|
||||
else if (MVT::isInteger(VT)) NI->StageBegin = &IntStage;
|
||||
else if (MVT::isFloatingPoint(VT)) NI->StageBegin = &FloatStage;
|
||||
if (NI->StageBegin) NI->StageEnd = NI->StageBegin + 1;
|
||||
}
|
||||
} else if (Node->isTargetOpcode()) {
|
||||
// get machine opcode
|
||||
MachineOpCode TOpc = Node->getTargetOpcode();
|
||||
// FIXME: This is an ugly (but temporary!) hack to test the scheduler
|
||||
// before we have real target info.
|
||||
// FIXME NI->Latency = std::max(1, TII.maxLatency(TOpc));
|
||||
// FIXME NI->ResourceSet = TII.resources(TOpc);
|
||||
if (TII.isCall(TOpc)) {
|
||||
NI->ResourceSet = RSBranch;
|
||||
NI->Latency = 40;
|
||||
NI->IsCall = true;
|
||||
} else if (TII.isLoad(TOpc)) {
|
||||
NI->ResourceSet = RSLoadStore;
|
||||
NI->Latency = 5;
|
||||
} else if (TII.isStore(TOpc)) {
|
||||
NI->ResourceSet = RSLoadStore;
|
||||
NI->Latency = 2;
|
||||
} else if (MVT::isInteger(VT)) {
|
||||
NI->ResourceSet = RSInteger;
|
||||
NI->Latency = 2;
|
||||
} else if (MVT::isFloatingPoint(VT)) {
|
||||
NI->ResourceSet = RSFloat;
|
||||
NI->Latency = 3;
|
||||
} else {
|
||||
NI->ResourceSet = RSOther;
|
||||
NI->Latency = 0;
|
||||
}
|
||||
} else {
|
||||
if (MVT::isInteger(VT)) {
|
||||
NI->ResourceSet = RSInteger;
|
||||
NI->Latency = 2;
|
||||
} else if (MVT::isFloatingPoint(VT)) {
|
||||
NI->ResourceSet = RSFloat;
|
||||
NI->Latency = 3;
|
||||
} else {
|
||||
NI->ResourceSet = RSOther;
|
||||
NI->Latency = 0;
|
||||
}
|
||||
// Check to see if it is a call
|
||||
NI->IsCall = TII.isCall(TOpc);
|
||||
// Get itinerary stages for instruction
|
||||
unsigned II = TII.getSchedClass(TOpc);
|
||||
NI->StageBegin = InstrItins.begin(II);
|
||||
NI->StageEnd = InstrItins.end(II);
|
||||
}
|
||||
|
||||
// Add one slot for the instruction itself
|
||||
NI->Latency++;
|
||||
// One slot for the instruction itself
|
||||
NI->Latency = 1;
|
||||
|
||||
// Add long latency for a call to push it back in time
|
||||
if (NI->IsCall) NI->Latency += CallLatency;
|
||||
|
||||
// Sum up all the latencies
|
||||
for (InstrStage *Stage = NI->StageBegin, *E = NI->StageEnd;
|
||||
Stage != E; Stage++) {
|
||||
NI->Latency += Stage->Cycles;
|
||||
}
|
||||
|
||||
// Sum up all the latencies for max tally size
|
||||
NSlots += NI->Latency;
|
||||
}
|
||||
|
||||
// Unify metrics if in a group
|
||||
if (AreGroups) {
|
||||
if (HasGroups) {
|
||||
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
||||
NodeInfo* NI = &Info[i];
|
||||
|
||||
if (NI->isGroupLeader()) {
|
||||
if (NI->isInGroup()) {
|
||||
NodeGroup *Group = NI->Group;
|
||||
unsigned Latency = 0;
|
||||
unsigned MaxLat = 0;
|
||||
unsigned ResourceSet = 0;
|
||||
bool IsCall = false;
|
||||
|
||||
for (NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
|
||||
NGI != NGE; NGI++) {
|
||||
NodeInfo* NGNI = *NGI;
|
||||
Latency += NGNI->Latency;
|
||||
IsCall = IsCall || NGNI->IsCall;
|
||||
if (!Group->getDominator()) {
|
||||
NIIterator NGI = Group->group_begin(), NGE = Group->group_end();
|
||||
NodeInfo *Dominator = *NGI;
|
||||
unsigned Latency = Dominator->Latency;
|
||||
|
||||
if (MaxLat < NGNI->Latency) {
|
||||
MaxLat = NGNI->Latency;
|
||||
ResourceSet = NGNI->ResourceSet;
|
||||
for (NGI++; NGI != NGE; NGI++) {
|
||||
NodeInfo* NGNI = *NGI;
|
||||
Latency += NGNI->Latency;
|
||||
if (Dominator->Latency < NGNI->Latency) Dominator = NGNI;
|
||||
}
|
||||
|
||||
NGNI->Latency = 0;
|
||||
NGNI->ResourceSet = 0;
|
||||
NGNI->IsCall = false;
|
||||
Dominator->Latency = Latency;
|
||||
Group->setDominator(Dominator);
|
||||
}
|
||||
|
||||
NI->Latency = Latency;
|
||||
NI->ResourceSet = ResourceSet;
|
||||
NI->IsCall = IsCall;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// FakeGroupDominators - Set dominators for non-scheduling.
|
||||
///
|
||||
void SimpleSched::FakeGroupDominators() {
|
||||
for (unsigned i = 0, N = NodeCount; i < N; i++) {
|
||||
NodeInfo* NI = &Info[i];
|
||||
|
||||
if (NI->isInGroup()) {
|
||||
NodeGroup *Group = NI->Group;
|
||||
|
||||
if (!Group->getDominator()) {
|
||||
Group->setDominator(NI);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -863,8 +890,8 @@ void SimpleSched::ScheduleBackward() {
|
||||
if (Slot == NotFound) Slot = 0;
|
||||
|
||||
// Find a slot where the needed resources are available
|
||||
if (NI->ResourceSet)
|
||||
Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
|
||||
if (NI->StageBegin != NI->StageEnd)
|
||||
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
||||
|
||||
// Set node slot
|
||||
NI->Slot = Slot;
|
||||
@ -918,8 +945,8 @@ void SimpleSched::ScheduleForward() {
|
||||
if (Slot == NotFound) Slot = 0;
|
||||
|
||||
// Find a slot where the needed resources are available
|
||||
if (NI->ResourceSet)
|
||||
Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
|
||||
if (NI->StageBegin != NI->StageEnd)
|
||||
Slot = Tally.FindAndReserve(Slot, NI->StageBegin, NI->StageEnd);
|
||||
|
||||
// Set node slot
|
||||
NI->Slot = Slot;
|
||||
@ -949,7 +976,7 @@ void SimpleSched::EmitAll() {
|
||||
// Iterate through nodes
|
||||
NodeGroupIterator NGI(Ordering[i]);
|
||||
if (NI->isInGroup()) {
|
||||
if (NI->isGroupLeader()) {
|
||||
if (NI->isGroupDominator()) {
|
||||
NodeGroupIterator NGI(Ordering[i]);
|
||||
while (NodeInfo *NI = NGI.next()) EmitNode(NI);
|
||||
}
|
||||
@ -1187,10 +1214,22 @@ void SimpleSched::EmitNode(NodeInfo *NI) {
|
||||
void SimpleSched::Schedule() {
|
||||
// Number the nodes
|
||||
NodeCount = DAG.allnodes_size();
|
||||
// Set up minimum info for scheduling.
|
||||
// Test to see if scheduling should occur
|
||||
bool ShouldSchedule = NodeCount > 3 && ScheduleStyle != noScheduling;
|
||||
// Set up minimum info for scheduling
|
||||
PrepareNodeInfo();
|
||||
// Construct node groups for flagged nodes
|
||||
IdentifyGroups();
|
||||
|
||||
// Don't waste time if is only entry and return
|
||||
if (ShouldSchedule) {
|
||||
// Get latency and resource requirements
|
||||
GatherSchedulingInfo();
|
||||
} else if (HasGroups) {
|
||||
// Make sure all the groups have dominators
|
||||
FakeGroupDominators();
|
||||
}
|
||||
|
||||
// Breadth first walk of DAG
|
||||
VisitAll();
|
||||
|
||||
@ -1204,10 +1243,7 @@ void SimpleSched::Schedule() {
|
||||
#endif
|
||||
|
||||
// Don't waste time if is only entry and return
|
||||
if (NodeCount > 3 && ScheduleStyle != noScheduling) {
|
||||
// Get latency and resource requirements
|
||||
GatherSchedulingInfo();
|
||||
|
||||
if (ShouldSchedule) {
|
||||
// Push back long instructions and critical path
|
||||
ScheduleBackward();
|
||||
|
||||
@ -1242,7 +1278,7 @@ void SimpleSched::printChanges(unsigned Index) {
|
||||
std::cerr << " " << NI->Preorder << ". ";
|
||||
printSI(std::cerr, NI);
|
||||
std::cerr << "\n";
|
||||
if (NI->isGroupLeader()) {
|
||||
if (NI->isGroupDominator()) {
|
||||
NodeGroup *Group = NI->Group;
|
||||
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
|
||||
NII != E; NII++) {
|
||||
@ -1265,7 +1301,6 @@ void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
|
||||
SDNode *Node = NI->Node;
|
||||
O << " "
|
||||
<< std::hex << Node << std::dec
|
||||
<< ", RS=" << NI->ResourceSet
|
||||
<< ", Lat=" << NI->Latency
|
||||
<< ", Slot=" << NI->Slot
|
||||
<< ", ARITY=(" << Node->getNumOperands() << ","
|
||||
@ -1286,7 +1321,7 @@ void SimpleSched::print(std::ostream &O) const {
|
||||
NodeInfo *NI = Ordering[i];
|
||||
printSI(O, NI);
|
||||
O << "\n";
|
||||
if (NI->isGroupLeader()) {
|
||||
if (NI->isGroupDominator()) {
|
||||
NodeGroup *Group = NI->Group;
|
||||
for (NIIterator NII = Group->group_begin(), E = Group->group_end();
|
||||
NII != E; NII++) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user