Optimizations got their own header files

Optimizations now live in the 'opt' namespace
include/llvm/Opt was renamed include/llvm/Optimizations


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2001-06-30 04:36:40 +00:00
parent 28bf86ac00
commit 7e02b7e600
7 changed files with 172 additions and 148 deletions

View File

@ -19,17 +19,18 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Optimizations/MethodInlining.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Opt/AllOpts.h"
#include <algorithm>
#include <map>
#include "llvm/Assembly/Writer.h"
using namespace opt;
// RemapInstruction - Convert the instruction operands from referencing the
// current values into those specified by ValueMap.
//
@ -60,7 +61,7 @@ static inline void RemapInstruction(Instruction *I,
// exists in the instruction stream. Similiarly this will inline a recursive
// method by one level.
//
bool InlineMethod(BasicBlock::iterator CIIt) {
bool opt::InlineMethod(BasicBlock::iterator CIIt) {
assert((*CIIt)->getInstType() == Instruction::Call &&
"InlineMethod only works on CallInst nodes!");
assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
@ -218,7 +219,7 @@ bool InlineMethod(BasicBlock::iterator CIIt) {
return true;
}
bool InlineMethod(CallInst *CI) {
bool opt::InlineMethod(CallInst *CI) {
assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
BasicBlock *PBB = CI->getParent();
@ -260,7 +261,7 @@ static inline bool DoMethodInlining(BasicBlock *BB) {
return false;
}
bool DoMethodInlining(Method *M) {
bool opt::DoMethodInlining(Method *M) {
bool Changed = false;
// Loop through now and inline instructions a basic block at a time...

View File

@ -21,6 +21,8 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Optimizations/ConstantProp.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
@ -28,18 +30,16 @@
#include "llvm/iOther.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/ConstantPool.h"
#include "llvm/Opt/AllOpts.h"
#include "llvm/Opt/ConstantHandling.h"
// Merge identical constant values in the constant pool.
//
// TODO: We can do better than this simplistic N^2 algorithm...
//
bool DoConstantPoolMerging(Method *M) {
bool opt::DoConstantPoolMerging(Method *M) {
return DoConstantPoolMerging(M->getConstantPool());
}
bool DoConstantPoolMerging(ConstantPool &CP) {
bool opt::DoConstantPoolMerging(ConstantPool &CP) {
bool Modified = false;
for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI) {
for (ConstantPool::PlaneType::iterator I = (*PI)->begin();
@ -73,7 +73,7 @@ inline static bool
ConstantFoldUnaryInst(Method *M, Method::inst_iterator &DI,
UnaryOperator *Op, ConstPoolVal *D) {
ConstPoolVal *ReplaceWith =
ConstantFoldUnaryInstruction(Op->getInstType(), D);
opt::ConstantFoldUnaryInstruction(Op->getInstType(), D);
if (!ReplaceWith) return false; // Nothing new to change...
@ -100,7 +100,7 @@ ConstantFoldBinaryInst(Method *M, Method::inst_iterator &DI,
BinaryOperator *Op,
ConstPoolVal *D1, ConstPoolVal *D2) {
ConstPoolVal *ReplaceWith =
ConstantFoldBinaryInstruction(Op->getInstType(), D1, D2);
opt::ConstantFoldBinaryInstruction(Op->getInstType(), D1, D2);
if (!ReplaceWith) return false; // Nothing new to change...
// Add the new value to the constant pool...
@ -124,7 +124,7 @@ ConstantFoldBinaryInst(Method *M, Method::inst_iterator &DI,
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool ConstantFoldTerminator(TerminatorInst *T) {
bool opt::ConstantFoldTerminator(TerminatorInst *T) {
// Branch - See if we are conditional jumping on constant
if (T->getInstType() == Instruction::Br) {
BranchInst *BI = (BranchInst*)T;
@ -186,7 +186,7 @@ ConstantFoldInstruction(Method *M, Method::inst_iterator &II) {
ConstPoolVal *D = Inst->getOperand(0)->castConstant();
if (D) return ConstantFoldUnaryInst(M, II, (UnaryOperator*)Inst, D);
} else if (Inst->isTerminator()) {
return ConstantFoldTerminator((TerminatorInst*)Inst);
return opt::ConstantFoldTerminator((TerminatorInst*)Inst);
} else if (Inst->isPHINode()) {
PHINode *PN = (PHINode*)Inst; // If it's a PHI node and only has one operand
@ -238,7 +238,7 @@ static bool DoConstPropPass(Method *M) {
// returns true on failure, false on success...
//
bool DoConstantPropogation(Method *M) {
bool opt::DoConstantPropogation(Method *M) {
bool Modified = false;
// Fold constants until we make no progress...

View File

@ -22,15 +22,15 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Optimizations/DCE.h"
#include "llvm/Tools/STLExtras.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Opt/AllOpts.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CFG.h"
#include "llvm/Tools/STLExtras.h"
#include <algorithm>
using namespace cfg;
@ -103,7 +103,7 @@ static bool RemoveSingularPHIs(BasicBlock *BB) {
return true; // Yes, we nuked at least one phi node
}
bool DoRemoveUnusedConstants(SymTabValue *S) {
bool opt::DoRemoveUnusedConstants(SymTabValue *S) {
bool Changed = false;
ConstantPool &CP = S->getConstantPool();
for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI)
@ -164,6 +164,125 @@ static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
} while ((*I)->isPHINode());
}
// SimplifyCFG - This function is used to do simplification of a CFG. For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG. It returns true if a modification was made, and returns an
// iterator that designates the first element remaining after the block that
// was deleted.
//
// WARNING: The entry node of a method may not be simplified.
//
bool opt::SimplifyCFG(Method::iterator &BBIt) {
assert(*BBIt && (*BBIt)->getParent() && "Block not embedded in method!");
BasicBlock *BB = *BBIt;
Method *M = BB->getParent();
assert(BB->getTerminator() && "Degenerate basic block encountered!");
assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
// Remove basic blocks that have no predecessors... which are unreachable.
if (pred_begin(BB) == pred_end(BB) &&
!BB->hasConstantPoolReferences()) {
//cerr << "Removing BB: \n" << BB;
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for_each(succ_begin(BB), succ_end(BB),
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
while (!BB->empty()) {
Instruction *I = BB->back();
// If this instruction is used, replace uses with an arbitrary
// constant value. Because control flow can't get here, we don't care
// what we replace the value with. Note that since this block is
// unreachable, and all values contained within it must dominate their
// uses, that all uses will eventually be removed.
if (!I->use_empty()) ReplaceUsesWithConstant(I);
// Remove the instruction from the basic block
delete BB->getInstList().pop_back();
}
delete M->getBasicBlocks().remove(BBIt);
return true;
}
// Check to see if this block has no instructions and only a single
// successor. If so, replace block references with successor.
succ_iterator SI(succ_begin(BB));
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
Instruction *I = BB->front();
if (I->isTerminator()) { // Terminator is the only instruction!
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
//cerr << "Killing Trivial BB: \n" << BB;
if (Succ != BB) { // Arg, don't hurt infinite loops!
if (Succ->front()->isPHINode()) {
// If our successor has PHI nodes, then we need to update them to
// include entries for BB's predecessors, not for BB itself.
//
PropogatePredecessorsForPHIs(BB, Succ);
}
BB->replaceAllUsesWith(Succ);
BB = M->getBasicBlocks().remove(BBIt);
if (BB->hasName() && !Succ->hasName()) // Transfer name if we can
Succ->setName(BB->getName());
delete BB; // Delete basic block
//cerr << "Method after removal: \n" << M;
return true;
}
}
}
// Merge basic blocks into their predecessor if there is only one pred,
// and if there is only one successor of the predecessor.
pred_iterator PI(pred_begin(BB));
if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB?
++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) {
BasicBlock *Pred = *pred_begin(BB);
TerminatorInst *Term = Pred->getTerminator();
assert(Term != 0 && "malformed basic block without terminator!");
// Does the predecessor block only have a single successor?
succ_iterator SI(succ_begin(Pred));
if (++SI == succ_end(Pred)) {
//cerr << "Merging: " << BB << "into: " << Pred;
// Delete the unconditianal branch from the predecessor...
BasicBlock::iterator DI = Pred->end();
assert(Pred->getTerminator() &&
"Degenerate basic block encountered!"); // Empty bb???
delete Pred->getInstList().remove(--DI); // Destroy uncond branch
// Move all definitions in the succecessor to the predecessor...
while (!BB->empty()) {
DI = BB->begin();
Instruction *Def = BB->getInstList().remove(DI); // Remove from front
Pred->getInstList().push_back(Def); // Add to end...
}
// Remove basic block from the method... and advance iterator to the
// next valid block...
BB = M->getBasicBlocks().remove(BBIt);
// Make all PHI nodes that refered to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(Pred);
// Inherit predecessors name if it exists...
if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
delete BB; // You ARE the weakest link... goodbye
return true;
}
}
return false;
}
static bool DoDCEPass(Method *M) {
Method::iterator BBIt, BBEnd = M->end();
if (M->begin() == BBEnd) return false; // Nothing to do
@ -178,134 +297,31 @@ static bool DoDCEPass(Method *M) {
// Loop over all of the basic blocks (except the first one) and remove them
// if they are unneeded...
//
for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ++BBIt) {
BasicBlock *BB = *BBIt;
assert(BB->getTerminator() && "Degenerate basic block encountered!");
// Remove basic blocks that have no predecessors... which are unreachable.
if (pred_begin(BB) == pred_end(BB) &&
!BB->hasConstantPoolReferences() && 0) {
//cerr << "Removing BB: \n" << BB;
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for_each(succ_begin(BB), succ_end(BB),
bind_obj(BB, &BasicBlock::removePredecessor));
while (!BB->empty()) {
Instruction *I = BB->front();
// If this instruction is used, replace uses with an arbitrary
// constant value. Because control flow can't get here, we don't care
// what we replace the value with.
if (!I->use_empty()) ReplaceUsesWithConstant(I);
// Remove the instruction from the basic block
delete BB->getInstList().remove(BB->begin());
}
delete M->getBasicBlocks().remove(BBIt);
--BBIt; // remove puts use on the next block, we want the previous one
for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) {
if (opt::SimplifyCFG(BBIt)) {
Changed = true;
continue;
}
// Check to see if this block has no instructions and only a single
// successor. If so, replace block references with successor.
succ_iterator SI(succ_begin(BB));
if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ?
Instruction *I = BB->front();
if (I->isTerminator()) { // Terminator is the only instruction!
BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor
//cerr << "Killing Trivial BB: \n" << BB;
if (Succ != BB) { // Arg, don't hurt infinite loops!
if (Succ->front()->isPHINode()) {
// If our successor has PHI nodes, then we need to update them to
// include entries for BB's predecessors, not for BB itself.
//
PropogatePredecessorsForPHIs(BB, Succ);
}
BB->replaceAllUsesWith(Succ);
BB = M->getBasicBlocks().remove(BBIt);
--BBIt; // remove puts use on the next block, we want the previous one
if (BB->hasName() && !Succ->hasName()) // Transfer name if we can
Succ->setName(BB->getName());
delete BB; // Delete basic block
//cerr << "Method after removal: \n" << M;
Changed = true;
continue;
}
}
}
// Merge basic blocks into their predecessor if there is only one pred,
// and if there is only one successor of the predecessor.
pred_iterator PI(pred_begin(BB));
if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB?
++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) {
BasicBlock *Pred = *pred_begin(BB);
TerminatorInst *Term = Pred->getTerminator();
assert(Term != 0 && "malformed basic block without terminator!");
// Does the predecessor block only have a single successor?
succ_iterator SI(succ_begin(Pred));
if (++SI == succ_end(Pred)) {
//cerr << "Merging: " << BB << "into: " << Pred;
// Delete the unconditianal branch from the predecessor...
BasicBlock::iterator DI = Pred->end();
assert(Pred->getTerminator() &&
"Degenerate basic block encountered!"); // Empty bb???
delete Pred->getInstList().remove(--DI); // Destroy uncond branch
// Move all definitions in the succecessor to the predecessor...
while (!BB->empty()) {
DI = BB->begin();
Instruction *Def = BB->getInstList().remove(DI); // Remove from front
Pred->getInstList().push_back(Def); // Add to end...
}
// Remove basic block from the method... and advance iterator to the
// next valid block...
BB = M->getBasicBlocks().remove(BBIt);
--BBIt; // remove puts us on the NEXT bb. We want the prev BB
Changed = true;
// Make all PHI nodes that refered to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(Pred);
// Inherit predecessors name if it exists...
if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
// You ARE the weakest link... goodbye
delete BB;
//WriteToVCG(M, "MergedInto");
}
} else {
++BBIt;
}
}
// Remove unused constants
Changed |= DoRemoveUnusedConstants(M);
return Changed;
return Changed | opt::DoRemoveUnusedConstants(M);
}
// It is possible that we may require multiple passes over the code to fully
// eliminate dead code. Iterate until we are done.
//
bool DoDeadCodeElimination(Method *M) {
bool opt::DoDeadCodeElimination(Method *M) {
bool Changed = false;
while (DoDCEPass(M)) Changed = true;
return Changed;
}
bool DoDeadCodeElimination(Module *C) {
bool Val = ApplyOptToAllMethods(C, DoDeadCodeElimination);
bool opt::DoDeadCodeElimination(Module *C) {
bool Val = C->reduceApply(DoDeadCodeElimination);
while (DoRemoveUnusedConstants(C)) Val = true;
return Val;
}

View File

@ -19,7 +19,7 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Opt/AllOpts.h"
#include "llvm/Optimizations/InductionVars.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/Analysis/IntervalPartition.h"
#include "llvm/Assembly/Writer.h"
@ -29,6 +29,10 @@
#include "llvm/CFG.h"
#include <algorithm>
#include "llvm/Analysis/LoopDepth.h"
using namespace opt;
// isLoopInvariant - Return true if the specified value/basic block source is
// an interval invariant computation.
//
@ -379,13 +383,11 @@ static bool ProcessIntervalPartition(cfg::IntervalPartition &IP) {
ptr_fun(ProcessInterval));
}
#include "llvm/Analysis/LoopDepth.h"
// DoInductionVariableCannonicalize - Simplify induction variables in loops.
// This function loops over an interval partition of a program, reducing it
// until the graph is gone.
//
bool DoInductionVariableCannonicalize(Method *M) {
bool opt::DoInductionVariableCannonicalize(Method *M) {
// TODO: REMOVE
if (0) { // Print basic blocks with their depth
LoopDepthCalculator LDC(M);

View File

@ -15,21 +15,21 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Opt/AllOpts.h"
#include "llvm/Optimizations/ConstantProp.h"
#include "llvm/Optimizations/ConstantHandling.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/ConstantPool.h"
#include "llvm/Opt/ConstantHandling.h"
#include "llvm/InstrTypes.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
#include "llvm/Tools/STLExtras.h"
//#include "llvm/Assembly/Writer.h"
#include <algorithm>
#include <map>
#include <set>
// InstVal class - This class represents the different lattice values that an
// instruction may occupy. It is a simple class with value semantics. The
// potential constant value that is pointed to is owned by the constant pool
@ -270,7 +270,7 @@ bool SCCP::doSCCP() {
MadeChanges = true;
continue; // Skip the ++II at the end of the loop here...
} else if (Inst->isTerminator()) {
MadeChanges |= ConstantFoldTerminator((TerminatorInst*)Inst);
MadeChanges |= opt::ConstantFoldTerminator((TerminatorInst*)Inst);
}
++II;
@ -280,7 +280,7 @@ bool SCCP::doSCCP() {
// introduced constants that already exist, and we don't want to pollute later
// stages with extraneous constants.
//
return MadeChanges | DoConstantPoolMerging(M->getConstantPool());
return MadeChanges | opt::DoConstantPoolMerging(M->getConstantPool());
}
@ -437,7 +437,8 @@ void SCCP::UpdateInstruction(Instruction *I) {
markOverdefined(I);
} else if (VState.isConstant()) { // Propogate constant value
ConstPoolVal *Result =
ConstantFoldUnaryInstruction(I->getInstType(), VState.getConstant());
opt::ConstantFoldUnaryInstruction(I->getInstType(),
VState.getConstant());
if (Result) {
// This instruction constant folds! The only problem is that the value
@ -465,9 +466,9 @@ void SCCP::UpdateInstruction(Instruction *I) {
markOverdefined(I);
} else if (V1State.isConstant() && V2State.isConstant()) {
ConstPoolVal *Result =
ConstantFoldBinaryInstruction(I->getInstType(), V1State.getConstant(),
V2State.getConstant());
opt::ConstantFoldBinaryInstruction(I->getInstType(),
V1State.getConstant(),
V2State.getConstant());
if (Result) {
// This instruction constant folds! The only problem is that the value
// returned is newly allocated. Make sure to stick it into the methods
@ -506,8 +507,7 @@ void SCCP::OperandChangedState(User *U) {
// DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation
// to prove whether a value is constant and whether blocks are used.
//
bool DoSparseConditionalConstantProp(Method *M) {
bool opt::DoSparseConditionalConstantProp(Method *M) {
SCCP S(M);
return S.doSCCP();
}

View File

@ -14,10 +14,10 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Optimizations/AllOpts.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/SymbolTable.h"
#include "llvm/Opt/AllOpts.h"
static bool StripSymbolTable(SymbolTable *SymTab) {
if (SymTab == 0) return false; // No symbol table? No problem.
@ -40,14 +40,14 @@ static bool StripSymbolTable(SymbolTable *SymTab) {
// DoSymbolStripping - Remove all symbolic information from a method
//
bool DoSymbolStripping(Method *M) {
bool opt::DoSymbolStripping(Method *M) {
return StripSymbolTable(M->getSymbolTable());
}
// DoFullSymbolStripping - Remove all symbolic information from all methods
// in a module, and all module level symbols. (method names, etc...)
//
bool DoFullSymbolStripping(Module *M) {
bool opt::DoFullSymbolStripping(Module *M) {
// Remove all symbols from methods in this module... and then strip all of the
// symbols in this module...
//

View File

@ -4,7 +4,9 @@
//
//===----------------------------------------------------------------------===//
#include "llvm/Opt/ConstantHandling.h"
#include "llvm/Optimizations/ConstantHandling.h"
namespace opt {
//===----------------------------------------------------------------------===//
// TemplateRules Class
@ -195,3 +197,6 @@ const ConstRules *ConstRules::find(const Type *Ty) {
Ty->setConstRules(Result); // Cache the value for future short circuiting!
return Result;
}
} // End namespace opt