Factor the code for collecting IV users out of LSR into an IVUsers class,

and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.

This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.

Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@71535 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-05-12 02:17:14 +00:00
parent efb9fbfdab
commit 81db61a2e6
13 changed files with 1380 additions and 948 deletions

View File

@ -0,0 +1,235 @@
//===- llvm/Analysis/IVUsers.h - Induction Variable Users -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements bookkeeping for "interesting" users of expressions
// computed from induction variables.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_IVUSERS_H
#define LLVM_ANALYSIS_IVUSERS_H
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include <llvm/ADT/SmallVector.h>
#include <map>
namespace llvm {
class DominatorTree;
class Instruction;
class Value;
class IVUsersOfOneStride;
/// IVStrideUse - Keep track of one use of a strided induction variable, where
/// the stride is stored externally. The Offset member keeps track of the
/// offset from the IV, User is the actual user of the operand, and
/// 'OperandValToReplace' is the operand of the User that is the use.
class IVStrideUse : public CallbackVH, public ilist_node<IVStrideUse> {
public:
IVStrideUse(IVUsersOfOneStride *parent,
const SCEVHandle &offset,
Instruction* U, Value *O, bool issigned)
: CallbackVH(U), Parent(parent), Offset(offset),
OperandValToReplace(O), IsSigned(issigned),
IsUseOfPostIncrementedValue(false) {
}
/// getUser - Return the user instruction for this use.
Instruction *getUser() const {
return cast<Instruction>(getValPtr());
}
/// setUser - Assign a new user instruction for this use.
void setUser(Instruction *NewUser) {
setValPtr(NewUser);
}
/// getParent - Return a pointer to the IVUsersOfOneStride that owns
/// this IVStrideUse.
IVUsersOfOneStride *getParent() const { return Parent; }
/// getOffset - Return the offset to add to a theoeretical induction
/// variable that starts at zero and counts up by the stride to compute
/// the value for the use. This always has the same type as the stride,
/// which may need to be casted to match the type of the use.
SCEVHandle getOffset() const { return Offset; }
/// setOffset - Assign a new offset to this use.
void setOffset(SCEVHandle Val) {
Offset = Val;
}
/// getOperandValToReplace - Return the Value of the operand in the user
/// instruction that this IVStrideUse is representing.
Value *getOperandValToReplace() const {
return OperandValToReplace;
}
/// setOperandValToReplace - Assign a new Value as the operand value
/// to replace.
void setOperandValToReplace(Value *Op) {
OperandValToReplace = Op;
}
/// isSigned - The stride (and thus also the Offset) of this use may be in
/// a narrower type than the use itself (OperandValToReplace->getType()).
/// When this is the case, isSigned() indicates whether the IV expression
/// should be signed-extended instead of zero-extended to fit the type of
/// the use.
bool isSigned() const { return IsSigned; }
/// isUseOfPostIncrementedValue - True if this should use the
/// post-incremented version of this IV, not the preincremented version.
/// This can only be set in special cases, such as the terminating setcc
/// instruction for a loop or uses dominated by the loop.
bool isUseOfPostIncrementedValue() const {
return IsUseOfPostIncrementedValue;
}
/// setIsUseOfPostIncrmentedValue - set the flag that indicates whether
/// this is a post-increment use.
void setIsUseOfPostIncrementedValue(bool Val) {
IsUseOfPostIncrementedValue = Val;
}
private:
/// Parent - a pointer to the IVUsersOfOneStride that owns this IVStrideUse.
IVUsersOfOneStride *Parent;
/// Offset - The offset to add to the base induction expression.
SCEVHandle Offset;
/// OperandValToReplace - The Value of the operand in the user instruction
/// that this IVStrideUse is representing.
WeakVH OperandValToReplace;
/// IsSigned - Determines whether the replacement value is sign or
/// zero extended to the type of the use.
bool IsSigned;
/// IsUseOfPostIncrementedValue - True if this should use the
/// post-incremented version of this IV, not the preincremented version.
bool IsUseOfPostIncrementedValue;
/// Deleted - Implementation of CallbackVH virtual function to
/// recieve notification when the User is deleted.
virtual void deleted();
};
template<> struct ilist_traits<IVStrideUse>
: public ilist_default_traits<IVStrideUse> {
// createSentinel is used to get hold of a node that marks the end of
// the list...
// The sentinel is relative to this instance, so we use a non-static
// method.
IVStrideUse *createSentinel() const {
// since i(p)lists always publicly derive from the corresponding
// traits, placing a data member in this class will augment i(p)list.
// But since the NodeTy is expected to publicly derive from
// ilist_node<NodeTy>, there is a legal viable downcast from it
// to NodeTy. We use this trick to superpose i(p)list with a "ghostly"
// NodeTy, which becomes the sentinel. Dereferencing the sentinel is
// forbidden (save the ilist_node<NodeTy>) so no one will ever notice
// the superposition.
return static_cast<IVStrideUse*>(&Sentinel);
}
static void destroySentinel(IVStrideUse*) {}
IVStrideUse *provideInitialHead() const { return createSentinel(); }
IVStrideUse *ensureHead(IVStrideUse*) const { return createSentinel(); }
static void noteHead(IVStrideUse*, IVStrideUse*) {}
private:
mutable ilist_node<IVStrideUse> Sentinel;
};
/// IVUsersOfOneStride - This structure keeps track of all instructions that
/// have an operand that is based on the trip count multiplied by some stride.
struct IVUsersOfOneStride : public ilist_node<IVUsersOfOneStride> {
private:
IVUsersOfOneStride(const IVUsersOfOneStride &I); // do not implement
void operator=(const IVUsersOfOneStride &I); // do not implement
public:
IVUsersOfOneStride() : Stride(0) {}
explicit IVUsersOfOneStride(const SCEV *stride) : Stride(stride) {}
/// Stride - The stride for all the contained IVStrideUses. This is
/// a constant for affine strides.
const SCEV *Stride;
/// Users - Keep track of all of the users of this stride as well as the
/// initial value and the operand that uses the IV.
ilist<IVStrideUse> Users;
void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand,
bool isSigned) {
Users.push_back(new IVStrideUse(this, Offset, User, Operand, isSigned));
}
};
class IVUsers : public LoopPass {
friend class IVStrideUserVH;
Loop *L;
LoopInfo *LI;
DominatorTree *DT;
ScalarEvolution *SE;
SmallPtrSet<Instruction*,16> Processed;
public:
/// IVUses - A list of all tracked IV uses of induction variable expressions
/// we are interested in.
ilist<IVUsersOfOneStride> IVUses;
/// IVUsesByStride - A mapping from the strides in StrideOrder to the
/// uses in IVUses.
std::map<SCEVHandle, IVUsersOfOneStride*> IVUsesByStride;
/// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
/// We use this to iterate over the IVUsesByStride collection without being
/// dependent on random ordering of pointers in the process.
SmallVector<SCEVHandle, 16> StrideOrder;
private:
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void releaseMemory();
public:
static char ID; // Pass ID, replacement for typeid
IVUsers();
/// AddUsersIfInteresting - Inspect the specified Instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool AddUsersIfInteresting(Instruction *I);
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace of the given IVStrideUse.
SCEVHandle getReplacementExpr(const IVStrideUse &U) const;
void print(raw_ostream &OS, const Module* = 0) const;
virtual void print(std::ostream &OS, const Module* = 0) const;
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
/// dump - This method is used for debugging.
void dump() const;
};
Pass *createIVUsersPass();
}
#endif

391
lib/Analysis/IVUsers.cpp Normal file
View File

@ -0,0 +1,391 @@
//===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements bookkeeping for "interesting" users of expressions
// computed from induction variables.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "iv-users"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
char IVUsers::ID = 0;
static RegisterPass<IVUsers>
X("iv-users", "Induction Variable Users", false, true);
Pass *llvm::createIVUsersPass() {
return new IVUsers();
}
/// containsAddRecFromDifferentLoop - Determine whether expression S involves a
/// subexpression that is an AddRec from a loop other than L. An outer loop
/// of L is OK, but not an inner loop nor a disjoint loop.
static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
// This is very common, put it first.
if (isa<SCEVConstant>(S))
return false;
if (const SCEVCommutativeExpr *AE = dyn_cast<SCEVCommutativeExpr>(S)) {
for (unsigned int i=0; i< AE->getNumOperands(); i++)
if (containsAddRecFromDifferentLoop(AE->getOperand(i), L))
return true;
return false;
}
if (const SCEVAddRecExpr *AE = dyn_cast<SCEVAddRecExpr>(S)) {
if (const Loop *newLoop = AE->getLoop()) {
if (newLoop == L)
return false;
// if newLoop is an outer loop of L, this is OK.
if (!LoopInfoBase<BasicBlock>::isNotAlreadyContainedIn(L, newLoop))
return false;
}
return true;
}
if (const SCEVUDivExpr *DE = dyn_cast<SCEVUDivExpr>(S))
return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
containsAddRecFromDifferentLoop(DE->getRHS(), L);
#if 0
// SCEVSDivExpr has been backed out temporarily, but will be back; we'll
// need this when it is.
if (const SCEVSDivExpr *DE = dyn_cast<SCEVSDivExpr>(S))
return containsAddRecFromDifferentLoop(DE->getLHS(), L) ||
containsAddRecFromDifferentLoop(DE->getRHS(), L);
#endif
if (const SCEVCastExpr *CE = dyn_cast<SCEVCastExpr>(S))
return containsAddRecFromDifferentLoop(CE->getOperand(), L);
return false;
}
/// getSCEVStartAndStride - Compute the start and stride of this expression,
/// returning false if the expression is not a start/stride pair, or true if it
/// is. The stride must be a loop invariant expression, but the start may be
/// a mix of loop invariant and loop variant expressions. The start cannot,
/// however, contain an AddRec from a different loop, unless that loop is an
/// outer loop of the current loop.
static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L, Loop *UseLoop,
SCEVHandle &Start, SCEVHandle &Stride,
bool &isSigned,
ScalarEvolution *SE, DominatorTree *DT) {
SCEVHandle TheAddRec = Start; // Initialize to zero.
bool isSExt = false;
bool isZExt = false;
// If the outer level is an AddExpr, the operands are all start values except
// for a nested AddRecExpr.
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
if (const SCEVAddRecExpr *AddRec =
dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
if (AddRec->getLoop() == L)
TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
else
return false; // Nested IV of some sort?
} else {
Start = SE->getAddExpr(Start, AE->getOperand(i));
}
} else if (const SCEVZeroExtendExpr *Z = dyn_cast<SCEVZeroExtendExpr>(SH)) {
TheAddRec = Z->getOperand();
isZExt = true;
} else if (const SCEVSignExtendExpr *S = dyn_cast<SCEVSignExtendExpr>(SH)) {
TheAddRec = S->getOperand();
isSExt = true;
} else if (isa<SCEVAddRecExpr>(SH)) {
TheAddRec = SH;
} else {
return false; // not analyzable.
}
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
if (!AddRec || AddRec->getLoop() != L) return false;
// Use getSCEVAtScope to attempt to simplify other loops out of
// the picture.
SCEVHandle AddRecStart = AddRec->getStart();
SCEVHandle BetterAddRecStart = SE->getSCEVAtScope(AddRecStart, UseLoop);
if (!isa<SCEVCouldNotCompute>(BetterAddRecStart))
AddRecStart = BetterAddRecStart;
// FIXME: If Start contains an SCEVAddRecExpr from a different loop, other
// than an outer loop of the current loop, reject it. LSR has no concept of
// operating on more than one loop at a time so don't confuse it with such
// expressions.
if (containsAddRecFromDifferentLoop(AddRecStart, L))
return false;
if (isSExt || isZExt)
Start = SE->getTruncateExpr(Start, AddRec->getType());
Start = SE->getAddExpr(Start, AddRecStart);
if (!isa<SCEVConstant>(AddRec->getStepRecurrence(*SE))) {
// If stride is an instruction, make sure it dominates the loop preheader.
// Otherwise we could end up with a use before def situation.
BasicBlock *Preheader = L->getLoopPreheader();
if (!AddRec->getStepRecurrence(*SE)->dominates(Preheader, DT))
return false;
DOUT << "[" << L->getHeader()->getName()
<< "] Variable stride: " << *AddRec << "\n";
}
Stride = AddRec->getStepRecurrence(*SE);
isSigned = isSExt;
return true;
}
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
/// and now we need to decide whether the user should use the preinc or post-inc
/// value. If this user should use the post-inc version of the IV, return true.
///
/// Choosing wrong here can break dominance properties (if we choose to use the
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
/// should use the post-inc value).
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
Loop *L, LoopInfo *LI, DominatorTree *DT,
Pass *P) {
// If the user is in the loop, use the preinc value.
if (L->contains(User->getParent())) return false;
BasicBlock *LatchBlock = L->getLoopLatch();
// Ok, the user is outside of the loop. If it is dominated by the latch
// block, use the post-inc value.
if (DT->dominates(LatchBlock, User->getParent()))
return true;
// There is one case we have to be careful of: PHI nodes. These little guys
// can live in blocks that are not dominated by the latch block, but (since
// their uses occur in the predecessor block, not the block the PHI lives in)
// should still use the post-inc value. Check for this case now.
PHINode *PN = dyn_cast<PHINode>(User);
if (!PN) return false; // not a phi, not dominated by latch block.
// Look at all of the uses of IV by the PHI node. If any use corresponds to
// a block that is not dominated by the latch block, give up and use the
// preincremented value.
unsigned NumUses = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == IV) {
++NumUses;
if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
return false;
}
// Okay, all uses of IV by PN are in predecessor blocks that really are
// dominated by the latch block. Use the post-incremented value.
return true;
}
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool IVUsers::AddUsersIfInteresting(Instruction *I) {
if (!SE->isSCEVable(I->getType()))
return false; // Void and FP expressions cannot be reduced.
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
if (SE->getTypeSizeInBits(I->getType()) > 64)
return false;
if (!Processed.insert(I))
return true; // Instruction already handled.
// Get the symbolic expression for this instruction.
SCEVHandle ISE = SE->getSCEV(I);
if (isa<SCEVCouldNotCompute>(ISE)) return false;
// Get the start and stride for this expression.
Loop *UseLoop = LI->getLoopFor(I->getParent());
SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
SCEVHandle Stride = Start;
bool isSigned;
if (!getSCEVStartAndStride(ISE, L, UseLoop, Start, Stride, isSigned, SE, DT))
return false; // Non-reducible symbolic expression, bail out.
SmallPtrSet<Instruction *, 4> UniqueUsers;
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (!UniqueUsers.insert(User))
continue;
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && Processed.count(User))
continue;
// Descend recursively, but not into PHI nodes outside the current loop.
// It's important to see the entire expression outside the loop to get
// choices that depend on addressing mode use right, although we won't
// consider references ouside the loop in all cases.
// If User is already in Processed, we don't want to recurse into it again,
// but do want to record a second reference in the same instruction.
bool AddUserToIVUsers = false;
if (LI->getLoopFor(User->getParent()) != L) {
if (isa<PHINode>(User) || Processed.count(User) ||
!AddUsersIfInteresting(User)) {
DOUT << "FOUND USER in other loop: " << *User
<< " OF SCEV: " << *ISE << "\n";
AddUserToIVUsers = true;
}
} else if (Processed.count(User) ||
!AddUsersIfInteresting(User)) {
DOUT << "FOUND USER: " << *User
<< " OF SCEV: " << *ISE << "\n";
AddUserToIVUsers = true;
}
if (AddUserToIVUsers) {
IVUsersOfOneStride *StrideUses = IVUsesByStride[Stride];
if (!StrideUses) { // First occurrence of this stride?
StrideOrder.push_back(Stride);
StrideUses = new IVUsersOfOneStride(Stride);
IVUses.push_back(StrideUses);
IVUsesByStride[Stride] = StrideUses;
}
// Okay, we found a user that we cannot reduce. Analyze the instruction
// and decide what to do with it. If we are a use inside of the loop, use
// the value before incrementation, otherwise use it after incrementation.
if (IVUseShouldUsePostIncValue(User, I, L, LI, DT, this)) {
// The value used will be incremented by the stride more than we are
// expecting, so subtract this off.
SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
StrideUses->addUser(NewStart, User, I, isSigned);
StrideUses->Users.back().setIsUseOfPostIncrementedValue(true);
DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
} else {
StrideUses->addUser(Start, User, I, isSigned);
}
}
}
return true;
}
IVUsers::IVUsers()
: LoopPass(&ID) {
}
void IVUsers::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
AU.setPreservesAll();
}
bool IVUsers::runOnLoop(Loop *l, LPPassManager &LPM) {
L = l;
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
// this loop. If they are induction variables, inspect their uses.
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
AddUsersIfInteresting(I);
return false;
}
/// getReplacementExpr - Return a SCEV expression which computes the
/// value of the OperandValToReplace of the given IVStrideUse.
SCEVHandle IVUsers::getReplacementExpr(const IVStrideUse &U) const {
const Type *UseTy = U.getOperandValToReplace()->getType();
// Start with zero.
SCEVHandle RetVal = SE->getIntegerSCEV(0, U.getParent()->Stride->getType());
// Create the basic add recurrence.
RetVal = SE->getAddRecExpr(RetVal, U.getParent()->Stride, L);
// Add the offset in a separate step, because it may be loop-variant.
RetVal = SE->getAddExpr(RetVal, U.getOffset());
// For uses of post-incremented values, add an extra stride to compute
// the actual replacement value.
if (U.isUseOfPostIncrementedValue())
RetVal = SE->getAddExpr(RetVal, U.getParent()->Stride);
// Evaluate the expression out of the loop, if possible.
if (!L->contains(U.getUser()->getParent())) {
SCEVHandle ExitVal = SE->getSCEVAtScope(RetVal, L->getParentLoop());
if (!isa<SCEVCouldNotCompute>(ExitVal) && ExitVal->isLoopInvariant(L))
RetVal = ExitVal;
}
// Promote the result to the type of the use.
if (SE->getTypeSizeInBits(RetVal->getType()) !=
SE->getTypeSizeInBits(UseTy)) {
if (U.isSigned())
RetVal = SE->getSignExtendExpr(RetVal, UseTy);
else
RetVal = SE->getZeroExtendExpr(RetVal, UseTy);
}
return RetVal;
}
void IVUsers::print(raw_ostream &OS, const Module *M) const {
OS << "IV Users for loop ";
WriteAsOperand(OS, L->getHeader(), false);
if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
OS << " with backedge-taken count "
<< *SE->getBackedgeTakenCount(L);
}
OS << ":\n";
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride*>::const_iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
OS << " Stride " << *SI->first->getType() << " " << *SI->first << ":\n";
for (ilist<IVStrideUse>::const_iterator UI = SI->second->Users.begin(),
E = SI->second->Users.end(); UI != E; ++UI) {
OS << " ";
WriteAsOperand(OS, UI->getOperandValToReplace(), false);
OS << " = ";
OS << *getReplacementExpr(*UI);
if (UI->isUseOfPostIncrementedValue())
OS << " (post-inc)";
OS << " in ";
UI->getUser()->print(OS);
}
}
}
void IVUsers::print(std::ostream &o, const Module *M) const {
raw_os_ostream OS(o);
print(OS, M);
}
void IVUsers::dump() const {
print(errs());
}
void IVUsers::releaseMemory() {
IVUsesByStride.clear();
StrideOrder.clear();
Processed.clear();
}
void IVStrideUse::deleted() {
// Remove this user from the list.
Parent->Users.erase(this);
// this now dangles!
}

View File

@ -749,16 +749,6 @@ be done safely if "b" isn't modified between the strlen and memcpy of course.
//===---------------------------------------------------------------------===//
We should be able to evaluate this loop:
int test(int x_offs) {
while (x_offs > 4)
x_offs -= 4;
return x_offs;
}
//===---------------------------------------------------------------------===//
Reassociate should turn things like:
int factorial(int X) {

File diff suppressed because it is too large Load Diff

View File

@ -20,6 +20,7 @@
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
@ -53,40 +54,6 @@ namespace {
struct BasedUser;
/// IVStrideUse - Keep track of one use of a strided induction variable, where
/// the stride is stored externally. The Offset member keeps track of the
/// offset from the IV, User is the actual user of the operand, and
/// 'OperandValToReplace' is the operand of the User that is the use.
struct VISIBILITY_HIDDEN IVStrideUse {
SCEVHandle Offset;
Instruction *User;
Value *OperandValToReplace;
// isUseOfPostIncrementedValue - True if this should use the
// post-incremented version of this IV, not the preincremented version.
// This can only be set in special cases, such as the terminating setcc
// instruction for a loop or uses dominated by the loop.
bool isUseOfPostIncrementedValue;
IVStrideUse(const SCEVHandle &Offs, Instruction *U, Value *O)
: Offset(Offs), User(U), OperandValToReplace(O),
isUseOfPostIncrementedValue(false) {}
};
/// IVUsersOfOneStride - This structure keeps track of all instructions that
/// have an operand that is based on the trip count multiplied by some stride.
/// The stride for all of these users is common and kept external to this
/// structure.
struct VISIBILITY_HIDDEN IVUsersOfOneStride {
/// Users - Keep track of all of the users of this stride as well as the
/// initial value and the operand that uses the IV.
std::vector<IVStrideUse> Users;
void addUser(const SCEVHandle &Offset,Instruction *User, Value *Operand) {
Users.push_back(IVStrideUse(Offset, User, Operand));
}
};
/// IVInfo - This structure keeps track of one IV expression inserted during
/// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
/// well as the PHI node and increment value created for rewrite.
@ -110,15 +77,12 @@ namespace {
};
class VISIBILITY_HIDDEN LoopStrengthReduce : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
DominatorTree *DT;
ScalarEvolution *SE;
bool Changed;
/// IVUsesByStride - Keep track of all uses of induction variables that we
/// are interested in. The key of the map is the stride of the access.
std::map<SCEVHandle, IVUsersOfOneStride> IVUsesByStride;
/// IVsByStride - Keep track of all IVs that have been inserted for a
/// particular stride.
std::map<SCEVHandle, IVsOfOneStride> IVsByStride;
@ -127,14 +91,9 @@ namespace {
/// reused (nor should they be rewritten to reuse other strides).
SmallSet<SCEVHandle, 4> StrideNoReuse;
/// StrideOrder - An ordering of the keys in IVUsesByStride that is stable:
/// We use this to iterate over the IVUsesByStride collection without being
/// dependent on random ordering of pointers in the process.
SmallVector<SCEVHandle, 16> StrideOrder;
/// DeadInsts - Keep track of instructions we may have made dead, so that
/// we can remove them after we are done working.
SmallVector<Instruction*, 16> DeadInsts;
SmallVector<WeakVH, 16> DeadInsts;
/// TLI - Keep a pointer of a TargetLowering to consult for determining
/// transformation profitability.
@ -161,11 +120,11 @@ namespace {
AU.addRequired<DominatorTree>();
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addRequired<IVUsers>();
AU.addPreserved<IVUsers>();
}
private:
bool AddUsersIfInteresting(Instruction *I, Loop *L,
SmallPtrSet<Instruction*,16> &Processed);
ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse,
const SCEVHandle* &CondStride);
@ -191,6 +150,8 @@ namespace {
const std::vector<BasedUser>& UsersToProcess);
bool ValidScale(bool, int64_t,
const std::vector<BasedUser>& UsersToProcess);
bool ValidOffset(bool, int64_t, int64_t,
const std::vector<BasedUser>& UsersToProcess);
SCEVHandle CollectIVUsers(const SCEVHandle &Stride,
IVUsersOfOneStride &Uses,
Loop *L,
@ -242,21 +203,8 @@ Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
if (DeadInsts.empty()) return;
// Sort the deadinsts list so that we can trivially eliminate duplicates as we
// go. The code below never adds a non-dead instruction to the worklist, but
// callers may not be so careful.
array_pod_sort(DeadInsts.begin(), DeadInsts.end());
// Drop duplicate instructions and those with uses.
for (unsigned i = 0, e = DeadInsts.size()-1; i < e; ++i) {
Instruction *I = DeadInsts[i];
if (!I->use_empty()) DeadInsts[i] = 0;
while (i != e && DeadInsts[i+1] == I)
DeadInsts[++i] = 0;
}
while (!DeadInsts.empty()) {
Instruction *I = DeadInsts.back();
Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.back());
DeadInsts.pop_back();
if (I == 0 || !isInstructionTriviallyDead(I))
@ -313,111 +261,6 @@ static bool containsAddRecFromDifferentLoop(SCEVHandle S, Loop *L) {
return false;
}
/// getSCEVStartAndStride - Compute the start and stride of this expression,
/// returning false if the expression is not a start/stride pair, or true if it
/// is. The stride must be a loop invariant expression, but the start may be
/// a mix of loop invariant and loop variant expressions. The start cannot,
/// however, contain an AddRec from a different loop, unless that loop is an
/// outer loop of the current loop.
static bool getSCEVStartAndStride(const SCEVHandle &SH, Loop *L,
SCEVHandle &Start, SCEVHandle &Stride,
ScalarEvolution *SE, DominatorTree *DT) {
SCEVHandle TheAddRec = Start; // Initialize to zero.
// If the outer level is an AddExpr, the operands are all start values except
// for a nested AddRecExpr.
if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(SH)) {
for (unsigned i = 0, e = AE->getNumOperands(); i != e; ++i)
if (const SCEVAddRecExpr *AddRec =
dyn_cast<SCEVAddRecExpr>(AE->getOperand(i))) {
if (AddRec->getLoop() == L)
TheAddRec = SE->getAddExpr(AddRec, TheAddRec);
else
return false; // Nested IV of some sort?
} else {
Start = SE->getAddExpr(Start, AE->getOperand(i));
}
} else if (isa<SCEVAddRecExpr>(SH)) {
TheAddRec = SH;
} else {
return false; // not analyzable.
}
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(TheAddRec);
if (!AddRec || AddRec->getLoop() != L) return false;
// FIXME: Generalize to non-affine IV's.
if (!AddRec->isAffine()) return false;
// If Start contains an SCEVAddRecExpr from a different loop, other than an
// outer loop of the current loop, reject it. SCEV has no concept of
// operating on more than one loop at a time so don't confuse it with such
// expressions.
if (containsAddRecFromDifferentLoop(AddRec->getOperand(0), L))
return false;
Start = SE->getAddExpr(Start, AddRec->getOperand(0));
if (!isa<SCEVConstant>(AddRec->getOperand(1))) {
// If stride is an instruction, make sure it dominates the loop preheader.
// Otherwise we could end up with a use before def situation.
BasicBlock *Preheader = L->getLoopPreheader();
if (!AddRec->getOperand(1)->dominates(Preheader, DT))
return false;
DOUT << "[" << L->getHeader()->getName()
<< "] Variable stride: " << *AddRec << "\n";
}
Stride = AddRec->getOperand(1);
return true;
}
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
/// and now we need to decide whether the user should use the preinc or post-inc
/// value. If this user should use the post-inc version of the IV, return true.
///
/// Choosing wrong here can break dominance properties (if we choose to use the
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
/// should use the post-inc value).
static bool IVUseShouldUsePostIncValue(Instruction *User, Instruction *IV,
Loop *L, DominatorTree *DT, Pass *P,
SmallVectorImpl<Instruction*> &DeadInsts){
// If the user is in the loop, use the preinc value.
if (L->contains(User->getParent())) return false;
BasicBlock *LatchBlock = L->getLoopLatch();
// Ok, the user is outside of the loop. If it is dominated by the latch
// block, use the post-inc value.
if (DT->dominates(LatchBlock, User->getParent()))
return true;
// There is one case we have to be careful of: PHI nodes. These little guys
// can live in blocks that do not dominate the latch block, but (since their
// uses occur in the predecessor block, not the block the PHI lives in) should
// still use the post-inc value. Check for this case now.
PHINode *PN = dyn_cast<PHINode>(User);
if (!PN) return false; // not a phi, not dominated by latch block.
// Look at all of the uses of IV by the PHI node. If any use corresponds to
// a block that is not dominated by the latch block, give up and use the
// preincremented value.
unsigned NumUses = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == IV) {
++NumUses;
if (!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
return false;
}
// Okay, all uses of IV by PN are in predecessor blocks that really are
// dominated by the latch block. Use the post-incremented value.
return true;
}
/// isAddressUse - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
@ -467,90 +310,6 @@ static const Type *getAccessType(const Instruction *Inst) {
return UseTy;
}
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
/// return true. Otherwise, return false.
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L,
SmallPtrSet<Instruction*,16> &Processed) {
if (!SE->isSCEVable(I->getType()))
return false; // Void and FP expressions cannot be reduced.
// LSR is not APInt clean, do not touch integers bigger than 64-bits.
if (SE->getTypeSizeInBits(I->getType()) > 64)
return false;
if (!Processed.insert(I))
return true; // Instruction already handled.
// Get the symbolic expression for this instruction.
SCEVHandle ISE = SE->getSCEV(I);
if (isa<SCEVCouldNotCompute>(ISE)) return false;
// Get the start and stride for this expression.
SCEVHandle Start = SE->getIntegerSCEV(0, ISE->getType());
SCEVHandle Stride = Start;
if (!getSCEVStartAndStride(ISE, L, Start, Stride, SE, DT))
return false; // Non-reducible symbolic expression, bail out.
std::vector<Instruction *> IUsers;
// Collect all I uses now because IVUseShouldUsePostIncValue may
// invalidate use_iterator.
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
IUsers.push_back(cast<Instruction>(*UI));
for (unsigned iused_index = 0, iused_size = IUsers.size();
iused_index != iused_size; ++iused_index) {
Instruction *User = IUsers[iused_index];
// Do not infinitely recurse on PHI nodes.
if (isa<PHINode>(User) && Processed.count(User))
continue;
// Descend recursively, but not into PHI nodes outside the current loop.
// It's important to see the entire expression outside the loop to get
// choices that depend on addressing mode use right, although we won't
// consider references ouside the loop in all cases.
// If User is already in Processed, we don't want to recurse into it again,
// but do want to record a second reference in the same instruction.
bool AddUserToIVUsers = false;
if (LI->getLoopFor(User->getParent()) != L) {
if (isa<PHINode>(User) || Processed.count(User) ||
!AddUsersIfInteresting(User, L, Processed)) {
DOUT << "FOUND USER in other loop: " << *User
<< " OF SCEV: " << *ISE << "\n";
AddUserToIVUsers = true;
}
} else if (Processed.count(User) ||
!AddUsersIfInteresting(User, L, Processed)) {
DOUT << "FOUND USER: " << *User
<< " OF SCEV: " << *ISE << "\n";
AddUserToIVUsers = true;
}
if (AddUserToIVUsers) {
IVUsersOfOneStride &StrideUses = IVUsesByStride[Stride];
if (StrideUses.Users.empty()) // First occurrence of this stride?
StrideOrder.push_back(Stride);
// Okay, we found a user that we cannot reduce. Analyze the instruction
// and decide what to do with it. If we are a use inside of the loop, use
// the value before incrementation, otherwise use it after incrementation.
if (IVUseShouldUsePostIncValue(User, I, L, DT, this, DeadInsts)) {
// The value used will be incremented by the stride more than we are
// expecting, so subtract this off.
SCEVHandle NewStart = SE->getMinusSCEV(Start, Stride);
StrideUses.addUser(NewStart, User, I);
StrideUses.Users.back().isUseOfPostIncrementedValue = true;
DOUT << " USING POSTINC SCEV, START=" << *NewStart<< "\n";
} else {
StrideUses.addUser(Start, User, I);
}
}
}
return true;
}
namespace {
/// BasedUser - For a particular base value, keep information about how we've
/// partitioned the expression so far.
@ -571,6 +330,13 @@ namespace {
/// EmittedBase.
Value *OperandValToReplace;
/// isSigned - The stride (and thus also the Base) of this use may be in
/// a narrower type than the use itself (OperandValToReplace->getType()).
/// When this is the case, the isSigned field indicates whether the
/// IV expression should be signed-extended instead of zero-extended to
/// fit the type of the use.
bool isSigned;
/// Imm - The immediate value that should be added to the base immediately
/// before Inst, because it will be folded into the imm field of the
/// instruction. This is also sometimes used for loop-variant values that
@ -589,10 +355,11 @@ namespace {
bool isUseOfPostIncrementedValue;
BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
: SE(se), Base(IVSU.Offset), Inst(IVSU.User),
OperandValToReplace(IVSU.OperandValToReplace),
: SE(se), Base(IVSU.getOffset()), Inst(IVSU.getUser()),
OperandValToReplace(IVSU.getOperandValToReplace()),
isSigned(IVSU.isSigned()),
Imm(SE->getIntegerSCEV(0, Base->getType())),
isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue) {}
isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}
// Once we rewrite the code to insert the new IVs we want, update the
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
@ -600,7 +367,7 @@ namespace {
void RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
Instruction *InsertPt,
SCEVExpander &Rewriter, Loop *L, Pass *P,
SmallVectorImpl<Instruction*> &DeadInsts);
SmallVectorImpl<WeakVH> &DeadInsts);
Value *InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
const Type *Ty,
@ -638,19 +405,27 @@ Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
InsertLoop = InsertLoop->getParentLoop();
}
Value *Base = Rewriter.expandCodeFor(NewBase, Ty, BaseInsertPt);
Value *Base = Rewriter.expandCodeFor(NewBase, NewBase->getType(),
BaseInsertPt);
SCEVHandle NewValSCEV = SE->getUnknown(Base);
// If there is no immediate value, skip the next part.
if (Imm->isZero())
return Base;
if (!Imm->isZero()) {
// If we are inserting the base and imm values in the same block, make sure
// to adjust the IP position if insertion reused a result.
if (IP == BaseInsertPt)
IP = Rewriter.getInsertionPoint();
// Always emit the immediate (if non-zero) into the same block as the user.
NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
}
if (isSigned)
NewValSCEV = SE->getTruncateOrSignExtend(NewValSCEV, Ty);
else
NewValSCEV = SE->getTruncateOrZeroExtend(NewValSCEV, Ty);
// If we are inserting the base and imm values in the same block, make sure to
// adjust the IP position if insertion reused a result.
if (IP == BaseInsertPt)
IP = Rewriter.getInsertionPoint();
// Always emit the immediate (if non-zero) into the same block as the user.
SCEVHandle NewValSCEV = SE->getAddExpr(SE->getUnknown(Base), Imm);
return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
}
@ -664,7 +439,7 @@ Value *BasedUser::InsertCodeForBaseAtPosition(const SCEVHandle &NewBase,
void BasedUser::RewriteInstructionToUseNewBase(const SCEVHandle &NewBase,
Instruction *NewBasePt,
SCEVExpander &Rewriter, Loop *L, Pass *P,
SmallVectorImpl<Instruction*> &DeadInsts){
SmallVectorImpl<WeakVH> &DeadInsts) {
if (!isa<PHINode>(Inst)) {
// By default, insert code at the user instruction.
BasicBlock::iterator InsertPt = Inst;
@ -1158,6 +933,39 @@ bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
return true;
}
/// ValidOffset - Check whether the given Offset is valid for all loads and
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
int64_t Offset,
int64_t Scale,
const std::vector<BasedUser>& UsersToProcess) {
if (!TLI)
return true;
for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
// If this is a load or other access, pass the type of the access in.
const Type *AccessTy = Type::VoidTy;
if (isAddressUse(UsersToProcess[i].Inst,
UsersToProcess[i].OperandValToReplace))
AccessTy = getAccessType(UsersToProcess[i].Inst);
else if (isa<PHINode>(UsersToProcess[i].Inst))
continue;
TargetLowering::AddrMode AM;
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
AM.BaseOffs = SC->getValue()->getSExtValue();
AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
AM.Scale = Scale;
// If load[imm+r*scale] is illegal, bail out.
if (!TLI->isLegalAddressingMode(AM, AccessTy))
return false;
}
return true;
}
/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
/// a nop.
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
@ -1196,10 +1004,10 @@ SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
int64_t SInt = SC->getValue()->getSExtValue();
for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
++NewStride) {
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
IVsByStride.find(StrideOrder[NewStride]);
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first) ||
StrideNoReuse.count(SI->first))
continue;
@ -1215,24 +1023,44 @@ SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
// multiplications.
if (Scale == 1 ||
(AllUsesAreAddresses &&
ValidScale(HasBaseReg, Scale, UsersToProcess)))
ValidScale(HasBaseReg, Scale, UsersToProcess))) {
// Prefer to reuse an IV with a base of zero.
for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
IE = SI->second.IVs.end(); II != IE; ++II)
// FIXME: Only handle base == 0 for now.
// Only reuse previous IV if it would not require a type conversion.
// Only reuse previous IV if it would not require a type conversion
// and if the base difference can be folded.
if (II->Base->isZero() &&
!RequiresTypeConversion(II->Base->getType(), Ty)) {
IV = *II;
return SE->getIntegerSCEV(Scale, Stride->getType());
}
// Otherwise, settle for an IV with a foldable base.
if (AllUsesAreAddresses)
for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
IE = SI->second.IVs.end(); II != IE; ++II)
// Only reuse previous IV if it would not require a type conversion
// and if the base difference can be folded.
if (SE->getEffectiveSCEVType(II->Base->getType()) ==
SE->getEffectiveSCEVType(Ty) &&
isa<SCEVConstant>(II->Base)) {
int64_t Base =
cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
if (Base > INT32_MIN && Base <= INT32_MAX &&
ValidOffset(HasBaseReg, -Base * Scale,
Scale, UsersToProcess)) {
IV = *II;
return SE->getIntegerSCEV(Scale, Stride->getType());
}
}
}
}
} else if (AllUsesAreOutsideLoop) {
// Accept nonconstant strides here; it is really really right to substitute
// an existing IV if we can.
for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
++NewStride) {
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
IVsByStride.find(StrideOrder[NewStride]);
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
continue;
int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
@ -1249,10 +1077,10 @@ SCEVHandle LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
}
// Special case, old IV is -1*x and this one is x. Can treat this one as
// -1*old.
for (unsigned NewStride = 0, e = StrideOrder.size(); NewStride != e;
++NewStride) {
for (unsigned NewStride = 0, e = IU->StrideOrder.size();
NewStride != e; ++NewStride) {
std::map<SCEVHandle, IVsOfOneStride>::iterator SI =
IVsByStride.find(StrideOrder[NewStride]);
IVsByStride.find(IU->StrideOrder[NewStride]);
if (SI == IVsByStride.end())
continue;
if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first))
@ -1303,10 +1131,15 @@ SCEVHandle LoopStrengthReduce::CollectIVUsers(const SCEVHandle &Stride,
bool &AllUsesAreAddresses,
bool &AllUsesAreOutsideLoop,
std::vector<BasedUser> &UsersToProcess) {
// FIXME: Generalize to non-affine IV's.
if (!Stride->isLoopInvariant(L))
return SE->getIntegerSCEV(0, Stride->getType());
UsersToProcess.reserve(Uses.Users.size());
for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i) {
UsersToProcess.push_back(BasedUser(Uses.Users[i], SE));
for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(),
E = Uses.Users.end(); I != E; ++I) {
UsersToProcess.push_back(BasedUser(*I, SE));
// Move any loop variant operands from the offset field to the immediate
// field of the use, so that we don't try to use something before it is
// computed.
@ -1404,7 +1237,7 @@ bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
// TODO: For now, don't do full strength reduction if there could
// potentially be greater-stride multiples of the current stride
// which could reuse the current stride IV.
if (StrideOrder.back() != Stride)
if (IU->StrideOrder.back() != Stride)
return false;
// Iterate through the uses to find conditions that automatically rule out
@ -1853,8 +1686,8 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
SCEVHandle RewriteExpr = SE->getUnknown(RewriteOp);
if (SE->getTypeSizeInBits(RewriteOp->getType()) !=
SE->getTypeSizeInBits(ReplacedTy)) {
if (SE->getEffectiveSCEVType(RewriteOp->getType()) !=
SE->getEffectiveSCEVType(ReplacedTy)) {
assert(SE->getTypeSizeInBits(RewriteOp->getType()) >
SE->getTypeSizeInBits(ReplacedTy) &&
"Unexpected widening cast!");
@ -1884,8 +1717,8 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
// it here.
if (!ReuseIV.Base->isZero()) {
SCEVHandle typedBase = ReuseIV.Base;
if (SE->getTypeSizeInBits(RewriteExpr->getType()) !=
SE->getTypeSizeInBits(ReuseIV.Base->getType())) {
if (SE->getEffectiveSCEVType(RewriteExpr->getType()) !=
SE->getEffectiveSCEVType(ReuseIV.Base->getType())) {
// It's possible the original IV is a larger type than the new IV,
// in which case we have to truncate the Base. We checked in
// RequiresTypeConversion that this is valid.
@ -1929,7 +1762,7 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
// Mark old value we replaced as possibly dead, so that it is eliminated
// if we just replaced the last use of that value.
DeadInsts.push_back(cast<Instruction>(User.OperandValToReplace));
DeadInsts.push_back(User.OperandValToReplace);
UsersToProcess.pop_back();
++NumReduced;
@ -1949,19 +1782,19 @@ void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEVHandle &Stride,
/// false.
bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
const SCEVHandle *&CondStride) {
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e && !CondUse;
++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
E = SI->second.Users.end(); UI != E; ++UI)
if (UI->User == Cond) {
for (unsigned Stride = 0, e = IU->StrideOrder.size();
Stride != e && !CondUse; ++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
E = SI->second->Users.end(); UI != E; ++UI)
if (UI->getUser() == Cond) {
// NOTE: we could handle setcc instructions with multiple uses here, but
// InstCombine does it as well for simple uses, it's not clear that it
// occurs enough in real life to handle.
CondUse = &*UI;
CondUse = UI;
CondStride = &SI->first;
return true;
}
@ -2022,9 +1855,18 @@ namespace {
ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
IVStrideUse* &CondUse,
const SCEVHandle* &CondStride) {
if (StrideOrder.size() < 2 ||
IVUsesByStride[*CondStride].Users.size() != 1)
// If there's only one stride in the loop, there's nothing to do here.
if (IU->StrideOrder.size() < 2)
return Cond;
// If there are other users of the condition's stride, don't bother
// trying to change the condition because the stride will still
// remain.
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator I =
IU->IVUsesByStride.find(*CondStride);
if (I == IU->IVUsesByStride.end() ||
I->second->Users.size() != 1)
return Cond;
// Only handle constant strides for now.
const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride);
if (!SC) return Cond;
@ -2051,9 +1893,9 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
return Cond;
// Look for a suitable stride / iv as replacement.
for (unsigned i = 0, e = StrideOrder.size(); i != e; ++i) {
std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
IVUsesByStride.find(StrideOrder[i]);
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
if (!isa<SCEVConstant>(SI->first))
continue;
int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
@ -2069,6 +1911,9 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
// Check for overflow.
if (!Mul.isSignedIntN(BitWidth))
continue;
// Check for overflow in the stride's type too.
if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType())))
continue;
// Watch out for overflow.
if (ICmpInst::isSignedPredicate(Predicate) &&
@ -2079,9 +1924,27 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
continue;
// Pick the best iv to use trying to avoid a cast.
NewCmpLHS = NULL;
for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
E = SI->second.Users.end(); UI != E; ++UI) {
NewCmpLHS = UI->OperandValToReplace;
for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
E = SI->second->Users.end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
// If the IVStrideUse implies a cast, check for an actual cast which
// can be used to find the original IV expression.
if (SE->getEffectiveSCEVType(Op->getType()) !=
SE->getEffectiveSCEVType(SI->first->getType())) {
CastInst *CI = dyn_cast<CastInst>(Op);
// If it's not a simple cast, it's complicated.
if (!CI)
continue;
// If it's a cast from a type other than the stride type,
// it's complicated.
if (CI->getOperand(0)->getType() != SI->first->getType())
continue;
// Ok, we found the IV expression in the stride's type.
Op = CI->getOperand(0);
}
NewCmpLHS = Op;
if (NewCmpLHS->getType() == CmpTy)
break;
}
@ -2105,13 +1968,13 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
// Don't rewrite if use offset is non-constant and the new type is
// of a different type.
// FIXME: too conservative?
if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->Offset))
if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset()))
continue;
bool AllUsesAreAddresses = true;
bool AllUsesAreOutsideLoop = true;
std::vector<BasedUser> UsersToProcess;
SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
AllUsesAreAddresses,
AllUsesAreOutsideLoop,
UsersToProcess);
@ -2127,7 +1990,7 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
if (Scale < 0 && !Cond->isEquality())
Predicate = ICmpInst::getSwappedPredicate(Predicate);
NewStride = &StrideOrder[i];
NewStride = &IU->StrideOrder[i];
if (!isa<PointerType>(NewCmpTy))
NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal);
else {
@ -2135,10 +1998,11 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy);
}
NewOffset = TyBits == NewTyBits
? SE->getMulExpr(CondUse->Offset,
? SE->getMulExpr(CondUse->getOffset(),
SE->getConstant(ConstantInt::get(CmpTy, Scale)))
: SE->getConstant(ConstantInt::get(NewCmpIntTy,
cast<SCEVConstant>(CondUse->Offset)->getValue()->getSExtValue()*Scale));
cast<SCEVConstant>(CondUse->getOffset())->getValue()
->getSExtValue()*Scale));
break;
}
}
@ -2165,13 +2029,12 @@ ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond,
OldCond);
// Remove the old compare instruction. The old indvar is probably dead too.
DeadInsts.push_back(cast<Instruction>(CondUse->OperandValToReplace));
DeadInsts.push_back(CondUse->getOperandValToReplace());
OldCond->replaceAllUsesWith(Cond);
OldCond->eraseFromParent();
IVUsesByStride[*CondStride].Users.pop_back();
IVUsesByStride[*NewStride].addUser(NewOffset, Cond, NewCmpLHS);
CondUse = &IVUsesByStride[*NewStride].Users.back();
IU->IVUsesByStride[*NewStride]->addUser(NewOffset, Cond, NewCmpLHS, false);
CondUse = &IU->IVUsesByStride[*NewStride]->Users.back();
CondStride = NewStride;
++NumEliminated;
Changed = true;
@ -2287,12 +2150,12 @@ ICmpInst *LoopStrengthReduce::OptimizeSMax(Loop *L, ICmpInst *Cond,
// Delete the max calculation instructions.
Cond->replaceAllUsesWith(NewCond);
Cond->eraseFromParent();
CondUse->setUser(NewCond);
Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
Cond->eraseFromParent();
Sel->eraseFromParent();
if (Cmp->use_empty())
Cmp->eraseFromParent();
CondUse->User = NewCond;
return NewCond;
}
@ -2304,19 +2167,19 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return;
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e;
for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e;
++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
if (!isa<SCEVConstant>(SI->first))
continue;
for (std::vector<IVStrideUse>::iterator UI = SI->second.Users.begin(),
E = SI->second.Users.end(); UI != E; /* empty */) {
std::vector<IVStrideUse>::iterator CandidateUI = UI;
for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(),
E = SI->second->Users.end(); UI != E; /* empty */) {
ilist<IVStrideUse>::iterator CandidateUI = UI;
++UI;
Instruction *ShadowUse = CandidateUI->User;
Instruction *ShadowUse = CandidateUI->getUser();
const Type *DestTy = NULL;
/* If shadow use is a int->float cast then insert a second IV
@ -2331,9 +2194,9 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
for (unsigned i = 0; i < n; ++i, ++d)
foo(d);
*/
if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->User))
if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser()))
DestTy = UCast->getDestTy();
else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->User))
else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser()))
DestTy = SCast->getDestTy();
if (!DestTy) continue;
@ -2400,7 +2263,6 @@ void LoopStrengthReduce::OptimizeShadowIV(Loop *L) {
/* Remove cast operation */
ShadowUse->replaceAllUsesWith(NewPH);
ShadowUse->eraseFromParent();
SI->second.Users.erase(CandidateUI);
NumShadow++;
break;
}
@ -2450,11 +2312,12 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
// transform the icmp to use post-inc iv. Otherwise do so only if it would
// not reuse another iv and its iv would be reused by other uses. We are
// optimizing for the case where the icmp is the only use of the iv.
IVUsersOfOneStride &StrideUses = IVUsesByStride[*CondStride];
for (unsigned i = 0, e = StrideUses.Users.size(); i != e; ++i) {
if (StrideUses.Users[i].User == Cond)
IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[*CondStride];
for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(),
E = StrideUses.Users.end(); I != E; ++I) {
if (I->getUser() == Cond)
continue;
if (!StrideUses.Users[i].isUseOfPostIncrementedValue)
if (!I->isUseOfPostIncrementedValue())
return;
}
@ -2463,10 +2326,10 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
// StrengthReduceStridedIVUsers?
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(*CondStride)) {
int64_t SInt = SC->getValue()->getSExtValue();
for (unsigned NewStride = 0, ee = StrideOrder.size(); NewStride != ee;
for (unsigned NewStride = 0, ee = IU->StrideOrder.size(); NewStride != ee;
++NewStride) {
std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
IVUsesByStride.find(StrideOrder[NewStride]);
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
if (!isa<SCEVConstant>(SI->first) || SI->first == *CondStride)
continue;
int64_t SSInt =
@ -2479,7 +2342,7 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
bool AllUsesAreAddresses = true;
bool AllUsesAreOutsideLoop = true;
std::vector<BasedUser> UsersToProcess;
SCEVHandle CommonExprs = CollectIVUsers(SI->first, SI->second, L,
SCEVHandle CommonExprs = CollectIVUsers(SI->first, *SI->second, L,
AllUsesAreAddresses,
AllUsesAreOutsideLoop,
UsersToProcess);
@ -2518,17 +2381,18 @@ void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) {
LatchBlock->getInstList().insert(TermBr, Cond);
// Clone the IVUse, as the old use still exists!
IVUsesByStride[*CondStride].addUser(CondUse->Offset, Cond,
CondUse->OperandValToReplace);
CondUse = &IVUsesByStride[*CondStride].Users.back();
IU->IVUsesByStride[*CondStride]->addUser(CondUse->getOffset(), Cond,
CondUse->getOperandValToReplace(),
false);
CondUse = &IU->IVUsesByStride[*CondStride]->Users.back();
}
}
// If we get to here, we know that we can transform the setcc instruction to
// use the post-incremented version of the IV, allowing us to coalesce the
// live ranges for the IV correctly.
CondUse->Offset = SE->getMinusSCEV(CondUse->Offset, *CondStride);
CondUse->isUseOfPostIncrementedValue = true;
CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), *CondStride));
CondUse->setIsUseOfPostIncrementedValue(true);
Changed = true;
++NumLoopCond;
@ -2644,19 +2508,13 @@ void LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) {
bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTree>();
SE = &getAnalysis<ScalarEvolution>();
Changed = false;
// Find all uses of induction variables in this loop, and categorize
// them by stride. Start by finding all of the PHI nodes in the header for
// this loop. If they are induction variables, inspect their uses.
SmallPtrSet<Instruction*,16> Processed; // Don't reprocess instructions.
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
AddUsersIfInteresting(I, L, Processed);
if (!IVUsesByStride.empty()) {
if (!IU->IVUsesByStride.empty()) {
#ifndef NDEBUG
DOUT << "\nLSR on \"" << L->getHeader()->getParent()->getNameStart()
<< "\" ";
@ -2664,7 +2522,8 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
#endif
// Sort the StrideOrder so we process larger strides first.
std::stable_sort(StrideOrder.begin(), StrideOrder.end(), StrideCompare(SE));
std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(),
StrideCompare(SE));
// Optimize induction variables. Some indvar uses can be transformed to use
// strides that will be needed for other purposes. A common example of this
@ -2695,11 +2554,15 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
// Also, note that we iterate over IVUsesByStride indirectly by using
// StrideOrder. This extra layer of indirection makes the ordering of
// strides deterministic - not dependent on map order.
for (unsigned Stride = 0, e = StrideOrder.size(); Stride != e; ++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride>::iterator SI =
IVUsesByStride.find(StrideOrder[Stride]);
assert(SI != IVUsesByStride.end() && "Stride doesn't exist!");
StrengthReduceStridedIVUsers(SI->first, SI->second, L);
for (unsigned Stride = 0, e = IU->StrideOrder.size();
Stride != e; ++Stride) {
std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[Stride]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
// FIXME: Generalize to non-affine IV's.
if (!SI->first->isLoopInvariant(L))
continue;
StrengthReduceStridedIVUsers(SI->first, *SI->second, L);
}
}
@ -2708,9 +2571,7 @@ bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) {
OptimizeLoopCountIV(L);
// We're done analyzing this loop; release all the state we built up for it.
IVUsesByStride.clear();
IVsByStride.clear();
StrideOrder.clear();
StrideNoReuse.clear();
// Clean up after ourselves

View File

@ -1,10 +1,11 @@
; RUN: llvm-as < %s | llc -march=x86-64 -f -o %t
; RUN: grep inc %t | count 1
; RUN: grep dec %t | count 2
; RUN: grep addq %t | count 13
; RUN: grep leaq %t | count 8
; RUN: grep leal %t | count 4
; RUN: grep movq %t | count 5
; RUN: grep addq %t | count 8
; RUN: grep addb %t | count 2
; RUN: grep leaq %t | count 12
; RUN: grep leal %t | count 2
; RUN: grep movq %t | count 4
; IV users in each of the loops from other loops shouldn't cause LSR
; to insert new induction variables. Previously it would create a

View File

@ -3,14 +3,13 @@
; RUN: not grep movz %t
; RUN: not grep sar %t
; RUN: not grep shl %t
; RUN: grep add %t | count 6
; RUN: grep inc %t | count 2
; RUN: grep dec %t | count 4
; RUN: grep add %t | count 2
; RUN: grep inc %t | count 4
; RUN: grep dec %t | count 2
; RUN: grep lea %t | count 2
; Optimize away zext-inreg and sext-inreg on the loop induction
; variable using trip-count information.
; Also, the loop-reversal algorithm kicks in twice.
define void @count_up(double* %d, i64 %n) nounwind {
entry:

View File

@ -8,7 +8,8 @@ entry:
bb2: ; preds = %bb3, %entry
%B_addr.0.rec = phi i64 [ %indvar.next154, %bb3 ], [ 0, %entry ] ; <i64> [#uses=2]
br i1 false, label %bb3, label %bb4
%z = icmp slt i64 %B_addr.0.rec, 20000
br i1 %z, label %bb3, label %bb4
bb3: ; preds = %bb2
%indvar.next154 = add i64 %B_addr.0.rec, 1 ; <i64> [#uses=1]
@ -17,7 +18,7 @@ bb3: ; preds = %bb2
bb4: ; preds = %bb2
%B_addr.0 = getelementptr float* %B, i64 %B_addr.0.rec ; <float*> [#uses=1]
%t1 = ptrtoint float* %B_addr.0 to i64 ; <i64> [#uses=1]
%t2 = and i64 %t1, 15 ; <i64> [#uses=1]
%t2 = and i64 %t1, 4294967295 ; <i64> [#uses=1]
%t3 = icmp eq i64 %t2, 0 ; <i1> [#uses=1]
br i1 %t3, label %bb5, label %bb10.preheader
@ -25,7 +26,7 @@ bb10.preheader: ; preds = %bb4
br label %bb9
bb5: ; preds = %bb4
unreachable
ret float 7.0
bb9: ; preds = %bb10.preheader
%t5 = getelementptr float* %B, i64 0 ; <float*> [#uses=1]

View File

@ -1,5 +1,4 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis | not grep {sext}
; RUN: llvm-as < %s | opt -indvars | llvm-dis | not grep {zext}
; RUN: llvm-as < %s | opt -indvars -instcombine | llvm-dis | not grep {\[sz\]ext}
; ModuleID = '<stdin>'
;extern int *a, *b, *c, *d, *e, *f; /* 64 bit */
;extern int K[256];

View File

@ -0,0 +1,90 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
; RUN: grep phi %t | count 4
; RUN: grep {= phi i32} %t | count 4
; RUN: not grep {sext i} %t
; RUN: not grep {zext i} %t
; RUN: not grep {trunc i} %t
; RUN: not grep {add i8} %t
; PR1301
; Do a bunch of analysis and prove that the loops can use an i32 trip
; count without casting.
; ModuleID = 'ada.bc'
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64"
target triple = "i686-pc-linux-gnu"
define void @kinds__sbytezero([256 x i32]* nocapture %a) nounwind {
bb.thread:
%tmp46 = getelementptr [256 x i32]* %a, i32 0, i32 0 ; <i32*> [#uses=1]
store i32 0, i32* %tmp46
br label %bb
bb: ; preds = %bb, %bb.thread
%i.0.reg2mem.0 = phi i8 [ -128, %bb.thread ], [ %tmp8, %bb ] ; <i8> [#uses=1]
%tmp8 = add i8 %i.0.reg2mem.0, 1 ; <i8> [#uses=3]
%tmp1 = sext i8 %tmp8 to i32 ; <i32> [#uses=1]
%tmp3 = add i32 %tmp1, 128 ; <i32> [#uses=1]
%tmp4 = getelementptr [256 x i32]* %a, i32 0, i32 %tmp3 ; <i32*> [#uses=1]
store i32 0, i32* %tmp4
%0 = icmp eq i8 %tmp8, 127 ; <i1> [#uses=1]
br i1 %0, label %return, label %bb
return: ; preds = %bb
ret void
}
define void @kinds__ubytezero([256 x i32]* nocapture %a) nounwind {
bb.thread:
%tmp35 = getelementptr [256 x i32]* %a, i32 0, i32 0 ; <i32*> [#uses=1]
store i32 0, i32* %tmp35
br label %bb
bb: ; preds = %bb, %bb.thread
%i.0.reg2mem.0 = phi i8 [ 0, %bb.thread ], [ %tmp7, %bb ] ; <i8> [#uses=1]
%tmp7 = add i8 %i.0.reg2mem.0, 1 ; <i8> [#uses=3]
%tmp1 = zext i8 %tmp7 to i32 ; <i32> [#uses=1]
%tmp3 = getelementptr [256 x i32]* %a, i32 0, i32 %tmp1 ; <i32*> [#uses=1]
store i32 0, i32* %tmp3
%0 = icmp eq i8 %tmp7, -1 ; <i1> [#uses=1]
br i1 %0, label %return, label %bb
return: ; preds = %bb
ret void
}
define void @kinds__srangezero([21 x i32]* nocapture %a) nounwind {
bb.thread:
br label %bb
bb: ; preds = %bb, %bb.thread
%i.0.reg2mem.0 = phi i8 [ -10, %bb.thread ], [ %tmp7, %bb ] ; <i8> [#uses=2]
%tmp12 = sext i8 %i.0.reg2mem.0 to i32 ; <i32> [#uses=1]
%tmp4 = add i32 %tmp12, 10 ; <i32> [#uses=1]
%tmp5 = getelementptr [21 x i32]* %a, i32 0, i32 %tmp4 ; <i32*> [#uses=1]
store i32 0, i32* %tmp5
%tmp7 = add i8 %i.0.reg2mem.0, 1 ; <i8> [#uses=2]
%0 = icmp sgt i8 %tmp7, 10 ; <i1> [#uses=1]
br i1 %0, label %return, label %bb
return: ; preds = %bb
ret void
}
define void @kinds__urangezero([21 x i32]* nocapture %a) nounwind {
bb.thread:
br label %bb
bb: ; preds = %bb, %bb.thread
%i.0.reg2mem.0 = phi i8 [ 10, %bb.thread ], [ %tmp7, %bb ] ; <i8> [#uses=2]
%tmp12 = sext i8 %i.0.reg2mem.0 to i32 ; <i32> [#uses=1]
%tmp4 = add i32 %tmp12, -10 ; <i32> [#uses=1]
%tmp5 = getelementptr [21 x i32]* %a, i32 0, i32 %tmp4 ; <i32*> [#uses=1]
store i32 0, i32* %tmp5
%tmp7 = add i8 %i.0.reg2mem.0, 1 ; <i8> [#uses=2]
%0 = icmp sgt i8 %tmp7, 30 ; <i1> [#uses=1]
br i1 %0, label %return, label %bb
return: ; preds = %bb
ret void
}

View File

@ -0,0 +1,33 @@
; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
; RUN: not grep and %t
; RUN: not grep zext %t
target datalayout = "-p:64:64:64"
define void @foo(double* %d, i64 %n) nounwind {
entry:
br label %loop
loop:
%indvar = phi i64 [ 0, %entry ], [ %indvar.next, %loop ]
%indvar.i8 = and i64 %indvar, 255
%t0 = getelementptr double* %d, i64 %indvar.i8
%t1 = load double* %t0
%t2 = mul double %t1, 0.1
store double %t2, double* %t0
%indvar.i24 = and i64 %indvar, 16777215
%t3 = getelementptr double* %d, i64 %indvar.i24
%t4 = load double* %t3
%t5 = mul double %t4, 2.3
store double %t5, double* %t3
%t6 = getelementptr double* %d, i64 %indvar
%t7 = load double* %t6
%t8 = mul double %t7, 4.5
store double %t8, double* %t6
%indvar.next = add i64 %indvar, 1
%exitcond = icmp eq i64 %indvar.next, 10
br i1 %exitcond, label %return, label %loop
return:
ret void
}

View File

@ -0,0 +1,29 @@
; RUN: llvm-as < %s | opt -indvars -loop-deletion | llvm-dis | grep phi | count 1
; Indvars should be able to evaluate this loop, allowing loop deletion
; to delete it.
define i32 @test(i32 %x_offs) nounwind readnone {
entry:
%0 = icmp sgt i32 %x_offs, 4 ; <i1> [#uses=1]
br i1 %0, label %bb.nph, label %bb2
bb.nph: ; preds = %entry
br label %bb
bb: ; preds = %bb1, %bb.nph
%x_offs_addr.01 = phi i32 [ %1, %bb1 ], [ %x_offs, %bb.nph ] ; <i32> [#uses=1]
%1 = add i32 %x_offs_addr.01, -4 ; <i32> [#uses=3]
br label %bb1
bb1: ; preds = %bb
%2 = icmp sgt i32 %1, 4 ; <i1> [#uses=1]
br i1 %2, label %bb, label %bb1.bb2_crit_edge
bb1.bb2_crit_edge: ; preds = %bb1
br label %bb2
bb2: ; preds = %bb1.bb2_crit_edge, %entry
%x_offs_addr.0.lcssa = phi i32 [ %1, %bb1.bb2_crit_edge ], [ %x_offs, %entry ] ; <i32> [#uses=1]
ret i32 %x_offs_addr.0.lcssa
}

View File

@ -1,4 +1,4 @@
; RUN: llvm-as < %s | opt -loop-reduce | llvm-dis | grep mul | count 3
; RUN: llvm-as < %s | opt -loop-reduce | llvm-dis | grep {mul.*%lsr.iv} | count 2
; The multiply in bb2 must not be reduced to an add, as the sext causes the
; %1 argument to become negative after a while.
; ModuleID = '<stdin>'