diff --git a/docs/CodeGenerator.html b/docs/CodeGenerator.html index ebee043315f..42721b6a35f 100644 --- a/docs/CodeGenerator.html +++ b/docs/CodeGenerator.html @@ -1228,15 +1228,17 @@ defining instruction is encountered.
We now have the information available to perform the liver intervals analysis +
We now have the information available to perform the live intervals analysis and build the live intervals themselves. We start off by numbering the basic blocks and machine instructions. We then handle the "live-in" values. These are in physical registers, so the physical register is assumed to be killed by the end of the basic block. Live intervals for virtual registers are computed -for some ordering of the machine instructions [1,N]. A live interval -is an interval [i,j), where 1 <= i <= j < N, for which a +for some ordering of the machine instructions [1, N]. A live interval +is an interval [i, j), where 1 <= i <= j < N, for which a variable is live.
+More to come...
+if (AllocationInst *AI = dyn_cast<AllocationInst>(Val)) { - // ... + // ... }
$ opt < a.bc > /dev/null -mypass -<no output> +<no output> $ opt < a.bc > /dev/null -mypass -debug I am here!@@ -458,7 +458,7 @@ DEBUG(std::cerr << "No debug type (2)\n");
$ opt < a.bc > /dev/null -mypass -<no output> +<no output> $ opt < a.bc > /dev/null -mypass -debug No debug type 'foo' debug type @@ -525,7 +525,7 @@ static Statistic<> NumXForms("mypassname", "The # of times I did stuff");@@ -538,7 +538,7 @@ static Statistic<> NumXForms("mypassname", "The # of times I did stuff");-++NumXForms; // I did stuff! +++NumXForms; // I did stuff!@@ -691,13 +691,12 @@ an example that prints the name of a BasicBlock and the number of$ opt -stats -mypassname < program.bc > /dev/null -... statistic output ... +... statistics output ...@@ -725,10 +724,10 @@ a BasicBlock:-// func is a pointer to a Function instance -for (Function::iterator i = func->begin(), e = func->end(); i != e; ++i) { - // print out the name of the basic block if it has one, and then the - // number of instructions that it contains +// func is a pointer to a Function instance +for (Function::iterator i = func->begin(), e = func->end(); i != e; ++i) + // Print out the name of the basic block if it has one, and then the + // number of instructions that it contains std::cerr << "Basic block (name=" << i->getName() << ") has " << i->size() << " instructions.\n"; -}@@ -760,7 +759,7 @@ small example that shows how to dump all instructions in a function to the stand-// blk is a pointer to a BasicBlock instance +// blk is a pointer to a BasicBlock instance for (BasicBlock::iterator i = blk->begin(), e = blk->end(); i != e; ++i) - // the next statement works since operator<<(ostream&,...) - // is overloaded for Instruction& + // The next statement works since operator<<(ostream&,...) + // is overloaded for Instruction& std::cerr << *i << "\n";#include "llvm/Support/InstIterator.h" -// Suppose F is a ptr to a function +// F is a ptr to a Function instance for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i) std::cerr << *i << "\n";@@ -799,8 +798,8 @@ is a BasicBlock::const_iterator:@@ -837,7 +836,7 @@ without actually obtaining it via iteration over some structure:-Instruction& inst = *i; // grab reference to instruction reference -Instruction* pinst = &*i; // grab pointer to instruction reference +Instruction& inst = *i; // Grab reference to instruction reference +Instruction* pinst = &*i; // Grab pointer to instruction reference const Instruction& inst = *j;void printNextInstruction(Instruction* inst) { BasicBlock::iterator it(inst); - ++it; // after this line, it refers to the instruction after *inst. + ++it; // After this line, it refers to the instruction after *inst if (it != inst->getParent()->end()) std::cerr << *it << "\n"; }@@ -889,16 +888,16 @@ class OurFunctionPass : public FunctionPass { for (BasicBlock::iterator i = b->begin(); ie = b->end(); i != ie; ++i) { if (CallInst* callInst = dyn_cast<CallInst>(&*i)) { - // we know we've encountered a call instruction, so we - // need to determine if it's a call to the - // function pointed to by m_func or not. + // We know we've encountered a call instruction, so we + // need to determine if it's a call to the + // function pointed to by m_func or not if (callInst->getCalledFunction() == targetFunc) ++callCounter; } } } - + } private: unsigned callCounter; @@ -955,12 +954,11 @@ of F:Function* F = ...; -for (Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i) { +for (Value::use_iterator i = F->use_begin(), e = F->use_end(); i != e; ++i) if (Instruction *Inst = dyn_cast<Instruction>(*i)) { std::cerr << "F is used in instruction:\n"; std::cerr << *Inst << "\n"; } -}
-// Create the initial outer struct. +// Create the initial outer struct PATypeHolder StructTy = OpaqueType::get(); std::vector<const Type*> Elts; Elts.push_back(PointerType::get(StructTy)); Elts.push_back(Type::IntTy); StructType *NewSTy = StructType::get(Elts); -// At this point, NewSTy = "{ opaque*, int }". Tell VMCore that -// the struct and the opaque type are actually the same. +// At this point, NewSTy = "{ opaque*, int }". Tell VMCore that +// the struct and the opaque type are actually the same. cast<OpaqueType>(StructTy.get())->refineAbstractTypeTo(NewSTy); // NewSTy is potentially invalidated, but StructTy (a PATypeHolder) is -// kept up-to-date. +// kept up-to-date NewSTy = cast<StructType>(StructTy.get()); -// Add a name for the type to the module symbol table (optional). +// Add a name for the type to the module symbol table (optional) MyModule->addTypeName("mylist", NewSTy);
for (SymbolTable::plane_const_iterator PI = ST.plane_begin(), PE = ST.plane_end(); PI != PE; ++PI ) { - PI->first // This is the Type* of the plane - PI->second // This is the SymbolTable::ValueMap of name/Value pairs + PI->first // This is the Type* of the plane + PI->second // This is the SymbolTable::ValueMap of name/Value pairs }
for (SymbolTable::type_const_iterator TI = ST.type_begin(), TE = ST.type_end(); TI != TE; ++TI ) { - TI->first // This is the name of the type - TI->second // This is the Type* value associated with the name + TI->first // This is the name of the type + TI->second // This is the Type* value associated with the name }
for (SymbolTable::value_const_iterator VI = ST.value_begin(SomeType), VE = ST.value_end(SomeType); VI != VE; ++VI ) { - VI->first // This is the name of the Value - VI->second // This is the Value* value associated with the name + VI->first // This is the name of the Value + VI->second // This is the Value* value associated with the name }