Strip out 2.3 info, make space for 2.4 info. I'd appreciate it if

various component owners could look through and update their areas
in the known-problems section.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57376 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-10-11 18:18:28 +00:00
parent ce91ec285d
commit 857fb1309f

View File

@ -1,15 +1,14 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<link rel="stylesheet" href="llvm.css" type="text/css">
<title>LLVM 2.3 Release Notes</title>
<title>LLVM 2.4 Release Notes</title>
</head>
<body>
<div class="doc_title">LLVM 2.3 Release Notes</div>
<div class="doc_title">LLVM 2.4 Release Notes</div>
<ol>
<li><a href="#intro">Introduction</a></li>
@ -36,7 +35,7 @@
<div class="doc_text">
<p>This document contains the release notes for the LLVM compiler
infrastructure, release 2.3. Here we describe the status of LLVM, including
infrastructure, release 2.4. Here we describe the status of LLVM, including
major improvements from the previous release and any known problems. All LLVM
releases may be downloaded from the <a href="http://llvm.org/releases/">LLVM
releases web site</a>.</p>
@ -62,12 +61,12 @@ current one. To see the release notes for a specific releases, please see the
<div class="doc_text">
<p>This is the fourteenth public release of the LLVM Compiler Infrastructure.
It includes a large number of features and refinements from LLVM 2.2.</p>
<p>This is the fifteenth public release of the LLVM Compiler Infrastructure.
It includes a large number of features and refinements from LLVM 2.3.</p>
</div>
<!-- Unfinished features in 2.3:
<!-- Unfinished features in 2.4:
Machine LICM
Machine Sinking
LegalizeDAGTypes
@ -75,47 +74,17 @@ It includes a large number of features and refinements from LLVM 2.2.</p>
<!--=========================================================================-->
<div class="doc_subsection">
<a name="changes">Major Changes in LLVM 2.3</a>
<a name="changes">Major Changes in LLVM 2.4</a>
</div>
<div class="doc_text">
<p>LLVM 2.3 no longer supports llvm-gcc 4.0, it has been replaced with
llvm-gcc 4.2.</p>
<p>LLVM 2.3 no longer includes the <tt>llvm-upgrade</tt> tool. It was useful
for upgrading LLVM 1.9 files to LLVM 2.x syntax, but you can always use a
previous LLVM release to do this. One nice impact of this is that the LLVM
regression test suite no longer depends on llvm-upgrade, which makes it run
faster.</p>
<p>The <tt>llvm2cpp</tt> tool has been folded into llc, use
<tt>llc -march=cpp</tt> instead of <tt>llvm2cpp</tt>.</p>
<p>....</p>
<p>LLVM API Changes:</p>
<ul>
<li>Several core LLVM IR classes have migrated to use the
'<tt>FOOCLASS::Create(...)</tt>' pattern instead of '<tt>new
FOOCLASS(...)</tt>' (e.g. where FOOCLASS=<tt>BasicBlock</tt>). We hope to
standardize on <tt>FOOCLASS::Create</tt> for all IR classes in the future,
but not all of them have been moved over yet.</li>
<li>LLVM 2.3 renames the LLVMBuilder and LLVMFoldingBuilder classes to
<a href="http://llvm.org/doxygen/classllvm_1_1IRBuilder.html">IRBuilder</a>.
</li>
<li>MRegisterInfo was renamed to
<a href="http://llvm.org/doxygen/classllvm_1_1TargetRegisterInfo.html">
TargetRegisterInfo</a>.</li>
<li>The MappedFile class is gone, please use
<a href="http://llvm.org/doxygen/classllvm_1_1MemoryBuffer.html">
MemoryBuffer</a> instead.</li>
<li>The '<tt>-enable-eh</tt>' flag to llc has been removed. Now code should
encode whether it is safe to omit unwind information for a function by
tagging the Function object with the '<tt>nounwind</tt>' attribute.</li>
<li>The ConstantFP::get method that uses APFloat now takes one argument
instead of two. The type argument has been removed, and the type is
now inferred from the size of the given APFloat value.</li>
<li>....</li>
</ul>
</div>
@ -126,12 +95,12 @@ It includes a large number of features and refinements from LLVM 2.2.</p>
<div class="doc_text">
<p>
The core LLVM 2.3 distribution currently consists of code from the core LLVM
The core LLVM 2.4 distribution currently consists of code from the core LLVM
repository (which roughly contains the LLVM optimizer, code generators and
supporting tools) and the llvm-gcc repository. In addition to this code, the
LLVM Project includes other sub-projects that are in development. The two which
are the most actively developed are the new <a href="#vmkit">vmkit Project</a>
and the <a href="#clang">Clang Project</a>.
are the most actively developed are the <a href="#clang">Clang Project</a> and
<a href="#vmkit">vmkit Project</a>.
</p>
</div>
@ -142,28 +111,11 @@ and the <a href="#clang">Clang Project</a>.
<div class="doc_text">
<p>
The "vmkit" project is a new addition to the LLVM family. It is an
implementation of a JVM and a CLI Virtual Machines (Microsoft .NET is an
The <a href="http://vmkit.llvm.org/">"vmkit" project</a> is an implementation of
a JVM and a CLI Virtual Machines (Microsoft .NET is an
implementation of the CLI) using the Just-In-Time compiler of LLVM.</p>
<p>The JVM, called JnJVM, executes real-world applications such as Apache
projects (e.g. Felix and Tomcat) and the SpecJVM98 benchmark. It uses the GNU
Classpath project for the base classes. The CLI implementation, called N3, is
its in early stages but can execute simple applications and the "pnetmark"
benchmark. It uses the pnetlib project as its core library.</p>
<p>The 'vmkit' VMs compare in performance with industrial and top open-source
VMs on scientific applications. Besides the JIT, the VMs use many features of
the LLVM framework, including the standard set of optimizations, atomic
operations, custom function provider and memory manager for JITed methods, and
specific virtual machine optimizations. vmkit is not an official part of LLVM
2.3 release. It is publicly available under the LLVM license and can be
downloaded from:
</p>
<div class="doc_code">
<pre>svn co http://llvm.org/svn/llvm-project/vmkit/trunk vmkit</pre>
</div>
<p>...</p>
</div>
@ -182,12 +134,12 @@ generation support is far enough along to build many C applications. While not
yet production quality, it is progressing very nicely. In addition, C++
front-end work has started to make significant progress.</p>
<p>At this point, Clang is most useful if you are interested in source-to-source
transformations (such as refactoring) and other source-level tools for C and
Objective-C. Clang now also includes tools for turning C code into pretty HTML,
and includes a new <a href="http://clang.llvm.org/StaticAnalysis.html">static
analysis tool</a> in development. This tool focuses on automatically finding
bugs in C and Objective-C code.</p>
<p>Codegen progress/state
</p>
<p>
<a href="http://clang.llvm.org/StaticAnalysis.html">static analysis tool</a>
</p>
</div>
@ -200,7 +152,7 @@ bugs in C and Objective-C code.</p>
<div class="doc_text">
<p>LLVM 2.3 includes a huge number of bug fixes, performance tweaks and minor
<p>LLVM 2.4 includes a huge number of bug fixes, performance tweaks and minor
improvements. Some of the major improvements and new features are listed in
this section.
</p>
@ -213,52 +165,18 @@ this section.
<div class="doc_text">
<p>LLVM 2.3 includes several major new capabilities:</p>
<p>LLVM 2.4 includes several major new capabilities:</p>
<ul>
<li><p>The biggest change in LLVM 2.3 is Multiple Return Value (MRV) support.
MRVs allow LLVM IR to directly represent functions that return multiple
values without having to pass them "by reference" in the LLVM IR. This
allows a front-end to generate more efficient code, as MRVs are generally
returned in registers if a target supports them. See the <a
href="LangRef.html#i_getresult">LLVM IR Reference</a> for more details.</p>
<li>
<p>MRVs got generalized to FCAs.</p>
</li>
<li><p>fast isel, -O0 compile times</p></li>
<p>MRVs are fully supported in the LLVM IR, but are not yet fully supported in
on all targets. However, it is generally safe to return up to 2 values from
a function: most targets should be able to handle at least that. MRV
support is a critical requirement for X86-64 ABI support, as X86-64 requires
the ability to return multiple registers from functions, and we use MRVs to
accomplish this in a direct way.</p></li>
<li><p>Attrs changes?</p></li>
<li><p>LLVM 2.3 includes a complete reimplementation of the "<tt>llvmc</tt>"
tool. It is designed to overcome several problems with the original
<tt>llvmc</tt> and to provide a superset of the features of the
'<tt>gcc</tt>' driver.</p>
<p>The main features of <tt>llvmc2</tt> are:
<ul>
<li>Extended handling of command line options and smart rules for
dispatching them to different tools.</li>
<li>Flexible (and extensible) rules for defining different tools.</li>
<li>The different intermediate steps performed by tools are represented
as edges in the abstract graph.</li>
<li>The 'language' for driver behavior definition is tablegen and thus
it's relatively easy to add new features.</li>
<li>The definition of driver is transformed into set of C++ classes, thus
no runtime interpretation is needed.</li>
</ul>
</li>
<li><p>LLVM 2.3 includes a completely rewritten interface for <a
href="LinkTimeOptimization.html">Link Time Optimization</a>. This interface
is written in C, which allows for easier integration with C code bases, and
incorporates improvements we learned about from the first incarnation of the
interface.</p></li>
<li><p>The <a href="tutorial/LangImpl1.html">Kaleidoscope tutorial</a> now
includes a "port" of the tutorial that <a
href="tutorial/OCamlLangImpl1.html">uses the Ocaml bindings</a> to implement
the Kaleidoscope language.</p></li>
<li><p>...</p></li>
</ul>
@ -272,19 +190,12 @@ this section.
<div class="doc_text">
<p>LLVM 2.3 fully supports the llvm-gcc 4.2 front-end, and includes support
<p>LLVM 2.4 fully supports the llvm-gcc 4.2 front-end, and includes support
for the C, C++, Objective-C, Ada, and Fortran front-ends.</p>
<p>
<ul>
<li>llvm-gcc 4.2 includes numerous fixes to better support the Objective-C
front-end. Objective-C now works very well on Mac OS/X.</li>
<li>Fortran <tt>EQUIVALENCE</tt>s are now supported by the gfortran
front-end.</li>
<li>llvm-gcc 4.2 includes many other fixes which improve conformance with the
relevant parts of the GCC testsuite.</li>
<li>...</li>
</ul>
@ -301,17 +212,7 @@ relevant parts of the GCC testsuite.</li>
</p>
<ul>
<li>LLVM IR now directly represents "common" linkage, instead of representing it
as a form of weak linkage.</li>
<li>LLVM IR now has support for atomic operations, and this functionality can be
accessed through the llvm-gcc "<tt>__sync_synchronize</tt>",
"<tt>__sync_val_compare_and_swap</tt>", and related builtins. Support for
atomics are available in the Alpha, X86, X86-64, and PowerPC backends.</li>
<li>The C and Ocaml bindings have extended to cover pass managers, several
transformation passes, iteration over the LLVM IR, target data, and parameter
attribute lists.</li>
<li>...</li>
</ul>
</div>
@ -324,64 +225,11 @@ attribute lists.</li>
<div class="doc_text">
<p>In addition to a huge array of bug fixes and minor performance tweaks, the
LLVM 2.3 optimizers support a few major enhancements:</p>
LLVM 2.4 optimizers support a few major enhancements:</p>
<ul>
<li><p>Loop index set splitting on by default.
This transformation hoists conditions from loop bodies and reduces a loop's
iteration space to improve performance. For example,</p>
<div class="doc_code">
<pre>
for (i = LB; i &lt; UB; ++i)
if (i &lt;= NV)
LOOP_BODY
</pre>
</div>
<p>is transformed into:</p>
<p><div class="doc_code">
<pre>
NUB = min(NV+1, UB)
for (i = LB; i &lt; NUB; ++i)
LOOP_BODY
</pre>
</div>
</p>
</li>
<li>LLVM now includes a new <tt>memcpy</tt> optimization pass which removes
dead <tt>memcpy</tt> calls, unneeded copies of aggregates, and performs
return slot optimization. The LLVM optimizer now notices long sequences of
consecutive stores and merges them into <tt>memcpy</tt>'s where profitable.</li>
<li>Alignment detection for vector memory references and for <tt>memcpy</tt> and
<tt>memset</tt> is now more aggressive.</li>
<li>The Aggressive Dead Code Elimination (ADCE) optimization has been rewritten
to make it both faster and safer in the presence of code containing infinite
loops. Some of its prior functionality has been factored out into the loop
deletion pass, which <em>is</em> safe for infinite loops. The new ADCE pass is
no longer based on control dependence, making it run faster.</li>
<li>The 'SimplifyLibCalls' pass, which optimizes calls to libc and libm
functions for C-based languages, has been rewritten to be a FunctionPass
instead a ModulePass. This allows it to be run more often and to be
included at -O1 in llvm-gcc. It was also extended to include more
optimizations and several corner case bugs were fixed.</li>
<li>LLVM now includes a simple 'Jump Threading' pass, which attempts to simplify
conditional branches using information about predecessor blocks, simplifying
the control flow graph. This pass is pretty basic at this point, but
catches some important cases and provides a foundation to build on.</li>
<li>Several corner case bugs which could lead to deleting volatile memory
accesses have been fixed.</li>
<li>Several optimizations have been sped up, leading to faster code generation
with the same code quality.</li>
<li>.</li>
</ul>
@ -399,45 +247,9 @@ which allows us to implement more aggressive algorithms and make it run
faster:</p>
<ul>
<li>The code generator now has support for carrying information about memory
references throughout the entire code generation process, via the
<a href="http://llvm.org/doxygen/classllvm_1_1MachineMemOperand.html">
MachineMemOperand</a> class. In the future this will be used to improve
both pre-pass and post-pass scheduling, and to improve compiler-debugging
output.</li>
<li>Selection dag speedups</li>
<li>...</li>
<li>The target-independent code generator infrastructure now uses LLVM's
<a href="http://llvm.org/doxygen/classllvm_1_1APInt.html">APInt</a>
class to handle integer values, which allows it to support integer types
larger than 64 bits (for example i128). Note that support for such types is
also dependent on target-specific support. Use of APInt is also a step
toward support for non-power-of-2 integer sizes.</li>
<li>LLVM 2.3 includes several compile time speedups for code with large basic
blocks, particularly in the instruction selection phase, register
allocation, scheduling, and tail merging/jump threading.</li>
<li>LLVM 2.3 includes several improvements which make llc's
<tt>--view-sunit-dags</tt> visualization of scheduling dependency graphs
easier to understand.</li>
<li>The code generator allows targets to write patterns that generate subreg
references directly in .td files now.</li>
<li><tt>memcpy</tt> lowering in the backend is more aggressive, particularly for
<tt>memcpy</tt> calls introduced by the code generator when handling
pass-by-value structure argument copies.</li>
<li>Inline assembly with multiple register results now returns those results
directly in the appropriate registers, rather than going through memory.
Inline assembly that uses constraints like "ir" with immediates now use the
'i' form when possible instead of always loading the value in a register.
This saves an instruction and reduces register use.</li>
<li>Added support for PIC/GOT style <a
href="CodeGenerator.html#tailcallopt">tail calls</a> on X86/32 and initial
support for tail calls on PowerPC 32 (it may also work on PowerPC 64 but is
not thoroughly tested).</li>
</ul>
</div>
@ -453,48 +265,7 @@ faster:</p>
</p>
<ul>
<li>llvm-gcc's X86-64 ABI conformance is far improved, particularly in the
area of passing and returning structures by value. llvm-gcc compiled code
now interoperates very well on X86-64 systems with other compilers.</li>
<li>Support for Win64 was added. This includes code generation itself, JIT
support, and necessary changes to llvm-gcc.</li>
<li>The LLVM X86 backend now supports the support SSE 4.1 instruction set, and
the llvm-gcc 4.2 front-end supports the SSE 4.1 compiler builtins. Various
generic vector operations (insert/extract/shuffle) are much more efficient
when SSE 4.1 is enabled. The JIT automatically takes advantage of these
instructions, but llvm-gcc must be explicitly told to use them, e.g. with
<tt>-march=penryn</tt>.</li>
<li>The X86 backend now does a number of optimizations that aim to avoid
converting numbers back and forth from SSE registers to the X87 floating
point stack. This is important because most X86 ABIs require return values
to be on the X87 Floating Point stack, but most CPUs prefer computation in
the SSE units.</li>
<li>The X86 backend supports stack realignment, which is particularly useful for
vector code on OS's without 16-byte aligned stacks, such as Linux and
Windows.</li>
<li>The X86 backend now supports the "sseregparm" options in GCC, which allow
functions to be tagged as passing floating point values in SSE
registers.</li>
<li>Trampolines (taking the address of a nested function) now work on
Linux/X86-64.</li>
<li><tt>__builtin_prefetch</tt> is now compiled into the appropriate prefetch
instructions instead of being ignored.</li>
<li>128-bit integers are now supported on X86-64 targets. This can be used
through <tt>__attribute__((TImode))</tt> in llvm-gcc.</li>
<li>The register allocator can now rematerialize PIC-base computations, which is
an important optimization for register use.</li>
<li>The "t" and "f" inline assembly constraints for the X87 floating point stack
now work. However, the "u" constraint is still not fully supported.</li>
<li>...</li>
</ul>
@ -510,9 +281,7 @@ faster:</p>
</p>
<ul>
<li>The LLVM C backend now supports vector code.</li>
<li>The Cell SPU backend includes a number of improvements. It generates better
code and its stability/completeness is improving.</li>
<li>....</li>
</ul>
</div>
@ -529,10 +298,7 @@ faster:</p>
</p>
<ul>
<li>LLVM now builds with GCC 4.3.</li>
<li>Bugpoint now supports running custom scripts (with the <tt>-run-custom</tt>
option) to determine how to execute the command and whether it is making
forward process.</li>
<li>...</li>
</ul>
</div>