split loads and calls into separate tables. Loads are now just indexed

by their pointer instead of using MemoryValue to wrap it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122731 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2011-01-03 03:41:27 +00:00
parent 03d49e955e
commit 85db61066a

View File

@ -28,7 +28,8 @@ using namespace llvm;
STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
STATISTIC(NumCSE, "Number of instructions CSE'd"); STATISTIC(NumCSE, "Number of instructions CSE'd");
STATISTIC(NumCSEMem, "Number of load and call instructions CSE'd"); STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
STATISTIC(NumCSECall, "Number of call instructions CSE'd");
static unsigned getHash(const void *V) { static unsigned getHash(const void *V) {
return DenseMapInfo<const void*>::getHashValue(V); return DenseMapInfo<const void*>::getHashValue(V);
@ -124,16 +125,16 @@ bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
} }
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// MemoryValue // CallValue
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
namespace { namespace {
/// MemoryValue - Instances of this struct represent available load and call /// CallValue - Instances of this struct represent available call values in
/// values in the scoped hash table. /// the scoped hash table.
struct MemoryValue { struct CallValue {
Instruction *Inst; Instruction *Inst;
MemoryValue(Instruction *I) : Inst(I) { CallValue(Instruction *I) : Inst(I) {
assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
} }
@ -143,8 +144,6 @@ namespace {
} }
static bool canHandle(Instruction *Inst) { static bool canHandle(Instruction *Inst) {
if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
return !LI->isVolatile();
if (CallInst *CI = dyn_cast<CallInst>(Inst)) if (CallInst *CI = dyn_cast<CallInst>(Inst))
return CI->onlyReadsMemory(); return CI->onlyReadsMemory();
return false; return false;
@ -153,23 +152,23 @@ namespace {
} }
namespace llvm { namespace llvm {
// MemoryValue is POD. // CallValue is POD.
template<> struct isPodLike<MemoryValue> { template<> struct isPodLike<CallValue> {
static const bool value = true; static const bool value = true;
}; };
template<> struct DenseMapInfo<MemoryValue> { template<> struct DenseMapInfo<CallValue> {
static inline MemoryValue getEmptyKey() { static inline CallValue getEmptyKey() {
return DenseMapInfo<Instruction*>::getEmptyKey(); return DenseMapInfo<Instruction*>::getEmptyKey();
} }
static inline MemoryValue getTombstoneKey() { static inline CallValue getTombstoneKey() {
return DenseMapInfo<Instruction*>::getTombstoneKey(); return DenseMapInfo<Instruction*>::getTombstoneKey();
} }
static unsigned getHashValue(MemoryValue Val); static unsigned getHashValue(CallValue Val);
static bool isEqual(MemoryValue LHS, MemoryValue RHS); static bool isEqual(CallValue LHS, CallValue RHS);
}; };
} }
unsigned DenseMapInfo<MemoryValue>::getHashValue(MemoryValue Val) { unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
Instruction *Inst = Val.Inst; Instruction *Inst = Val.Inst;
// Hash in all of the operands as pointers. // Hash in all of the operands as pointers.
unsigned Res = 0; unsigned Res = 0;
@ -179,13 +178,10 @@ unsigned DenseMapInfo<MemoryValue>::getHashValue(MemoryValue Val) {
return (Res << 1) ^ Inst->getOpcode(); return (Res << 1) ^ Inst->getOpcode();
} }
bool DenseMapInfo<MemoryValue>::isEqual(MemoryValue LHS, MemoryValue RHS) { bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
if (LHS.isSentinel() || RHS.isSentinel()) if (LHS.isSentinel() || RHS.isSentinel())
return LHSI == RHSI; return LHSI == RHSI;
if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
return LHSI->isIdenticalTo(RHSI); return LHSI->isIdenticalTo(RHSI);
} }
@ -218,16 +214,20 @@ public:
/// their lookup. /// their lookup.
ScopedHTType *AvailableValues; ScopedHTType *AvailableValues;
typedef ScopedHashTable<MemoryValue, std::pair<Value*, unsigned> > MemHTType; /// AvailableLoads - This scoped hash table contains the current values
/// AvailableMemValues - This scoped hash table contains the current values of /// of loads. This allows us to get efficient access to dominating loads when
/// loads and other read-only memory values. This allows us to get efficient /// we have a fully redundant load. In addition to the most recent load, we
/// access to dominating loads we we find a fully redundant load. In addition /// keep track of a generation count of the read, which is compared against
/// to the most recent load, we keep track of a generation count of the read, /// the current generation count. The current generation count is
/// which is compared against the current generation count. The current /// incremented after every possibly writing memory operation, which ensures
/// generation count is incremented after every possibly writing memory /// that we only CSE loads with other loads that have no intervening store.
/// operation, which ensures that we only CSE loads with other loads that have typedef ScopedHashTable<Value*, std::pair<Value*, unsigned> > LoadHTType;
/// no intervening store. LoadHTType *AvailableLoads;
MemHTType *AvailableMemValues;
/// AvailableCalls - This scoped hash table contains the current values
/// of read-only call values. It uses the same generation count as loads.
typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
CallHTType *AvailableCalls;
/// CurrentGeneration - This is the current generation of the memory value. /// CurrentGeneration - This is the current generation of the memory value.
unsigned CurrentGeneration; unsigned CurrentGeneration;
@ -268,9 +268,13 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
// off all the values we install. // off all the values we install.
ScopedHTType::ScopeTy Scope(*AvailableValues); ScopedHTType::ScopeTy Scope(*AvailableValues);
// Define a scope for the memory values so that anything we add will get // Define a scope for the load values so that anything we add will get
// popped when we recurse back up to our parent domtree node. // popped when we recurse back up to our parent domtree node.
MemHTType::ScopeTy MemScope(*AvailableMemValues); LoadHTType::ScopeTy LoadScope(*AvailableLoads);
// Define a scope for the call values so that anything we add will get
// popped when we recurse back up to our parent domtree node.
CallHTType::ScopeTy CallScope(*AvailableCalls);
BasicBlock *BB = Node->getBlock(); BasicBlock *BB = Node->getBlock();
@ -327,23 +331,48 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
continue; continue;
} }
// If this is a read-only memory value, process it. // If this is a non-volatile load, process it.
if (MemoryValue::canHandle(Inst)) { if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// If we have an available version of this value, and if it is the right // Ignore volatile loads.
if (LI->isVolatile()) continue;
// If we have an available version of this load, and if it is the right
// generation, replace this instruction. // generation, replace this instruction.
std::pair<Value*, unsigned> InVal = AvailableMemValues->lookup(Inst); std::pair<Value*, unsigned> InVal =
AvailableLoads->lookup(Inst->getOperand(0));
if (InVal.first != 0 && InVal.second == CurrentGeneration) { if (InVal.first != 0 && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE MEM: " << *Inst << " to: " DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
<< *InVal.first << '\n'); << *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first); if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent(); Inst->eraseFromParent();
Changed = true; Changed = true;
++NumCSEMem; ++NumCSELoad;
continue; continue;
} }
// Otherwise, remember that we have this instruction. // Otherwise, remember that we have this instruction.
AvailableMemValues->insert(Inst, AvailableLoads->insert(Inst->getOperand(0),
std::pair<Value*, unsigned>(Inst, CurrentGeneration));
continue;
}
// If this is a read-only call, process it.
if (CallValue::canHandle(Inst)) {
// If we have an available version of this call, and if it is the right
// generation, replace this instruction.
std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
if (InVal.first != 0 && InVal.second == CurrentGeneration) {
DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
<< *InVal.first << '\n');
if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
Inst->eraseFromParent();
Changed = true;
++NumCSECall;
continue;
}
// Otherwise, remember that we have this instruction.
AvailableCalls->insert(Inst,
std::pair<Value*, unsigned>(Inst, CurrentGeneration)); std::pair<Value*, unsigned>(Inst, CurrentGeneration));
continue; continue;
} }
@ -368,11 +397,14 @@ bool EarlyCSE::processNode(DomTreeNode *Node) {
bool EarlyCSE::runOnFunction(Function &F) { bool EarlyCSE::runOnFunction(Function &F) {
TD = getAnalysisIfAvailable<TargetData>(); TD = getAnalysisIfAvailable<TargetData>();
DT = &getAnalysis<DominatorTree>(); DT = &getAnalysis<DominatorTree>();
// Tables that the pass uses when walking the domtree.
ScopedHTType AVTable; ScopedHTType AVTable;
AvailableValues = &AVTable; AvailableValues = &AVTable;
LoadHTType LoadTable;
MemHTType MemTable; AvailableLoads = &LoadTable;
AvailableMemValues = &MemTable; CallHTType CallTable;
AvailableCalls = &CallTable;
CurrentGeneration = 0; CurrentGeneration = 0;
return processNode(DT->getRootNode()); return processNode(DT->getRootNode());