implement InstCombine/shift-trunc-shift.ll. This allows

us to compile:
#include <math.h>
int t1(double d) { return signbit(d); }

into:

_t1:
	movd	%xmm0, %rax
	shrq	$63, %rax
	ret

instead of:

_t1:
	movd	%xmm0, %rax
	shrq	$32, %rax
	shrl	$31, %eax
	ret

on x86-64.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45311 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-12-22 09:07:47 +00:00
parent cae8d8d4be
commit 8999dd3c68
2 changed files with 54 additions and 0 deletions

View File

@ -6004,6 +6004,50 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
if (Instruction *NV = FoldOpIntoPhi(I)) if (Instruction *NV = FoldOpIntoPhi(I))
return NV; return NV;
// Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
// If 'shift2' is an ashr, we would have to get the sign bit into a funny
// place. Don't try to do this transformation in this case. Also, we
// require that the input operand is a shift-by-constant so that we have
// confidence that the shifts will get folded together. We could do this
// xform in more cases, but it is unlikely to be profitable.
if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
isa<ConstantInt>(TrOp->getOperand(1))) {
// Okay, we'll do this xform. Make the shift of shift.
Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
Instruction *NSh = BinaryOperator::create(I.getOpcode(), TrOp, ShAmt,
I.getName());
InsertNewInstBefore(NSh, I); // (shift2 (shift1 & 0x00FF), c2)
// For logical shifts, the truncation has the effect of making the high
// part of the register be zeros. Emulate this by inserting an AND to
// clear the top bits as needed. This 'and' will usually be zapped by
// other xforms later if dead.
unsigned SrcSize = TrOp->getType()->getPrimitiveSizeInBits();
unsigned DstSize = TI->getType()->getPrimitiveSizeInBits();
APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
// The mask we constructed says what the trunc would do if occurring
// between the shifts. We want to know the effect *after* the second
// shift. We know that it is a logical shift by a constant, so adjust the
// mask as appropriate.
if (I.getOpcode() == Instruction::Shl)
MaskV <<= Op1->getZExtValue();
else {
assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
MaskV = MaskV.lshr(Op1->getZExtValue());
}
Instruction *And = BinaryOperator::createAnd(NSh, ConstantInt::get(MaskV),
TI->getName());
InsertNewInstBefore(And, I); // shift1 & 0x00FF
// Return the value truncated to the interesting size.
return new TruncInst(And, I.getType());
}
}
if (Op0->hasOneUse()) { if (Op0->hasOneUse()) {
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
// Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)

View File

@ -0,0 +1,10 @@
; RUN: llvm-as < %s | opt -instcombine | llvm-dis | grep lshr.*63
define i32 @t1(i64 %d18) {
entry:
%tmp916 = lshr i64 %d18, 32 ; <i64> [#uses=1]
%tmp917 = trunc i64 %tmp916 to i32 ; <i32> [#uses=1]
%tmp10 = lshr i32 %tmp917, 31 ; <i32> [#uses=1]
ret i32 %tmp10
}