libLTO: Add a utility method to initialize the disassemblers.

Necessary to give disassembler users (like darwin's otool) a possibility to
dlopen libLTO and still initialize the required LLVM bits. This used to go
through libMCDisassembler but that's a gross layering violation, the MC layer
can't pull in functions from the targets. Adding a function to libLTO is a bit
of a hack but not worse than exposing other disassembler bits from libLTO.

Fixes PR14362.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168545 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer
2012-11-24 16:59:10 +00:00
parent d3022b8946
commit 8a2ce5d329
5 changed files with 35 additions and 13 deletions

View File

@ -20,7 +20,6 @@
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/MemoryObject.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ErrorHandling.h"
namespace llvm {
@ -38,18 +37,6 @@ using namespace llvm;
LLVMDisasmContextRef LLVMCreateDisasm(const char *TripleName, void *DisInfo,
int TagType, LLVMOpInfoCallback GetOpInfo,
LLVMSymbolLookupCallback SymbolLookUp) {
// Initialize targets and assembly printers/parsers.
// FIXME: Clients are responsible for initializing the targets. And this
// would be done by calling routines in "llvm-c/Target.h" which are static
// line functions. But the current use of LLVMCreateDisasm() is to dynamically
// load libLTO with dlopen() and then lookup the symbols using dlsym().
// And since these initialize routines are static that does not work which
// is why the call to them in this 'C' library API was added back.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
// Get the target.
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);