Remove trailing whitespace

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21417 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2005-04-21 21:44:41 +00:00
parent 2b37d7cf28
commit 8a96c53d36
4 changed files with 241 additions and 241 deletions

View File

@ -1,10 +1,10 @@
//===-- Analyzer.cpp - Analysis and Dumping of Bytecode 000000---*- C++ -*-===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This file implements the AnalyzerHandler class and PrintBytecodeAnalysis
@ -35,7 +35,7 @@ class AnalyzerHandler : public BytecodeHandler {
BytecodeAnalysis& bca; ///< The structure in which data is recorded
std::ostream* os; ///< A convenience for osing data.
/// @brief Keeps track of current function
BytecodeAnalysis::BytecodeFunctionInfo* currFunc;
BytecodeAnalysis::BytecodeFunctionInfo* currFunc;
Module* M; ///< Keeps track of current module
/// @name Constructor
@ -44,8 +44,8 @@ public:
/// The only way to construct an AnalyzerHandler. All that is needed is a
/// reference to the BytecodeAnalysis structure where the output will be
/// placed.
AnalyzerHandler(BytecodeAnalysis& TheBca, std::ostream* output)
: bca(TheBca)
AnalyzerHandler(BytecodeAnalysis& TheBca, std::ostream* output)
: bca(TheBca)
, os(output)
, currFunc(0)
{ }
@ -54,7 +54,7 @@ public:
/// @name BytecodeHandler Implementations
/// @{
public:
virtual void handleError(const std::string& str ) {
virtual void handleError(const std::string& str ) {
if (os)
*os << "ERROR: " << str << "\n";
}
@ -104,16 +104,16 @@ public:
virtual void handleFinish() {
if (os)
*os << "} End Bytecode\n";
*os << "} End Bytecode\n";
bca.fileDensity = double(bca.byteSize) / double( bca.numTypes + bca.numValues );
double globalSize = 0.0;
globalSize += double(bca.BlockSizes[BytecodeFormat::ConstantPoolBlockID]);
globalSize += double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfoBlockID]);
globalSize += double(bca.BlockSizes[BytecodeFormat::GlobalTypePlaneBlockID]);
bca.globalsDensity = globalSize / double( bca.numTypes + bca.numConstants +
bca.globalsDensity = globalSize / double( bca.numTypes + bca.numConstants +
bca.numGlobalVars );
bca.functionDensity = double(bca.BlockSizes[BytecodeFormat::FunctionBlockID]) /
bca.functionDensity = double(bca.BlockSizes[BytecodeFormat::FunctionBlockID]) /
double(bca.numFunctions);
if ( bca.progressiveVerify ) {
@ -131,7 +131,7 @@ public:
bca.ModuleId = id;
}
virtual void handleModuleEnd(const std::string& id) {
virtual void handleModuleEnd(const std::string& id) {
if (os)
*os << " } End Module " << id << "\n";
if ( bca.progressiveVerify ) {
@ -147,22 +147,22 @@ public:
unsigned char RevisionNum, ///< Byte code revision number
Module::Endianness Endianness, ///< Endianness indicator
Module::PointerSize PointerSize ///< PointerSize indicator
) {
) {
if (os)
*os << " RevisionNum: " << int(RevisionNum)
*os << " RevisionNum: " << int(RevisionNum)
<< " Endianness: " << Endianness
<< " PointerSize: " << PointerSize << "\n";
bca.version = RevisionNum;
}
virtual void handleModuleGlobalsBegin() {
virtual void handleModuleGlobalsBegin() {
if (os)
*os << " BLOCK: ModuleGlobalInfo {\n";
}
virtual void handleGlobalVariable(
const Type* ElemType,
bool isConstant,
virtual void handleGlobalVariable(
const Type* ElemType,
bool isConstant,
GlobalValue::LinkageTypes Linkage,
unsigned SlotNum,
unsigned initSlot
@ -173,7 +173,7 @@ public:
<< ( isConstant? "Constant, " : "Variable, ")
<< " Linkage=" << Linkage << " Type=";
WriteTypeSymbolic(*os, ElemType, M);
*os << " Slot=" << SlotNum << " InitSlot=" << initSlot
*os << " Slot=" << SlotNum << " InitSlot=" << initSlot
<< "\n";
}
@ -190,8 +190,8 @@ public:
bca.maxTypeSlot = numEntries - 1;
}
virtual void handleType( const Type* Ty ) {
bca.numTypes++;
virtual void handleType( const Type* Ty ) {
bca.numTypes++;
if (os) {
*os << " Type: ";
WriteTypeSymbolic(*os,Ty,M);
@ -199,7 +199,7 @@ public:
}
}
virtual void handleFunctionDeclaration(
virtual void handleFunctionDeclaration(
Function* Func ///< The function
) {
bca.numFunctions++;
@ -228,7 +228,7 @@ public:
*os << " Library: '" << libName << "'\n";
}
virtual void handleModuleGlobalsEnd() {
virtual void handleModuleGlobalsEnd() {
if (os)
*os << " } END BLOCK: ModuleGlobalInfo\n";
if ( bca.progressiveVerify ) {
@ -240,7 +240,7 @@ public:
}
}
virtual void handleCompactionTableBegin() {
virtual void handleCompactionTableBegin() {
if (os)
*os << " BLOCK: CompactionTable {\n";
bca.numCmpctnTables++;
@ -251,53 +251,53 @@ public:
*os << " Plane: Ty=" << Ty << " Size=" << NumEntries << "\n";
}
virtual void handleCompactionTableType( unsigned i, unsigned TypSlot,
virtual void handleCompactionTableType( unsigned i, unsigned TypSlot,
const Type* Ty ) {
if (os) {
*os << " Type: " << i << " Slot:" << TypSlot << " is ";
WriteTypeSymbolic(*os,Ty,M);
*os << "\n";
*os << "\n";
}
}
virtual void handleCompactionTableValue(unsigned i, unsigned TypSlot,
unsigned ValSlot) {
unsigned ValSlot) {
if (os)
*os << " Value: " << i << " TypSlot: " << TypSlot
*os << " Value: " << i << " TypSlot: " << TypSlot
<< " ValSlot:" << ValSlot << "\n";
if (ValSlot > bca.maxValueSlot)
bca.maxValueSlot = ValSlot;
}
virtual void handleCompactionTableEnd() {
virtual void handleCompactionTableEnd() {
if (os)
*os << " } END BLOCK: CompactionTable\n";
}
virtual void handleSymbolTableBegin(Function* CF, SymbolTable* ST) {
bca.numSymTab++;
virtual void handleSymbolTableBegin(Function* CF, SymbolTable* ST) {
bca.numSymTab++;
if (os)
*os << " BLOCK: SymbolTable {\n";
}
virtual void handleSymbolTablePlane(unsigned Ty, unsigned NumEntries,
const Type* Typ) {
virtual void handleSymbolTablePlane(unsigned Ty, unsigned NumEntries,
const Type* Typ) {
if (os) {
*os << " Plane: Ty=" << Ty << " Size=" << NumEntries << " Type: ";
WriteTypeSymbolic(*os,Typ,M);
*os << "\n";
*os << "\n";
}
}
virtual void handleSymbolTableType(unsigned i, unsigned TypSlot,
const std::string& name ) {
virtual void handleSymbolTableType(unsigned i, unsigned TypSlot,
const std::string& name ) {
if (os)
*os << " Type " << i << " Slot=" << TypSlot
<< " Name: " << name << "\n";
<< " Name: " << name << "\n";
}
virtual void handleSymbolTableValue(unsigned i, unsigned ValSlot,
const std::string& name ) {
virtual void handleSymbolTableValue(unsigned i, unsigned ValSlot,
const std::string& name ) {
if (os)
*os << " Value " << i << " Slot=" << ValSlot
<< " Name: " << name << "\n";
@ -305,7 +305,7 @@ public:
bca.maxValueSlot = ValSlot;
}
virtual void handleSymbolTableEnd() {
virtual void handleSymbolTableEnd() {
if (os)
*os << " } END BLOCK: SymbolTable\n";
}
@ -314,7 +314,7 @@ public:
if (os) {
*os << " BLOCK: Function {\n"
<< " Linkage: " << Func->getLinkage() << "\n"
<< " Type: ";
<< " Type: ";
WriteTypeSymbolic(*os,Func->getType(),M);
*os << "\n";
}
@ -362,14 +362,14 @@ public:
if ( currFunc ) currFunc->numBasicBlocks++;
}
virtual bool handleInstruction( unsigned Opcode, const Type* iType,
virtual bool handleInstruction( unsigned Opcode, const Type* iType,
std::vector<unsigned>& Operands, unsigned Size){
if (os) {
*os << " INST: OpCode="
*os << " INST: OpCode="
<< Instruction::getOpcodeName(Opcode) << " Type=\"";
WriteTypeSymbolic(*os,iType,M);
*os << "\"";
for ( unsigned i = 0; i < Operands.size(); ++i )
for ( unsigned i = 0; i < Operands.size(); ++i )
*os << " Op(" << i << ")=Slot(" << Operands[i] << ")";
*os << "\n";
}
@ -388,25 +388,25 @@ public:
if (Size > 4 ) currFunc->longInstructions++;
if ( Opcode == Instruction::PHI ) currFunc->numPhis++;
}
return Instruction::isTerminator(Opcode);
return Instruction::isTerminator(Opcode);
}
virtual void handleBasicBlockEnd(unsigned blocknum) {
virtual void handleBasicBlockEnd(unsigned blocknum) {
if (os)
*os << " } END BLOCK: BasicBlock #" << blocknum << "{\n";
}
virtual void handleGlobalConstantsBegin() {
virtual void handleGlobalConstantsBegin() {
if (os)
*os << " BLOCK: GlobalConstants {\n";
}
virtual void handleConstantExpression( unsigned Opcode,
virtual void handleConstantExpression( unsigned Opcode,
std::vector<Constant*> ArgVec, Constant* C ) {
if (os) {
*os << " EXPR: " << Instruction::getOpcodeName(Opcode) << "\n";
for ( unsigned i = 0; i < ArgVec.size(); ++i ) {
*os << " Arg#" << i << " "; ArgVec[i]->print(*os);
*os << " Arg#" << i << " "; ArgVec[i]->print(*os);
*os << "\n";
}
*os << " Value=";
@ -427,13 +427,13 @@ public:
bca.numValues++;
}
virtual void handleConstantArray( const ArrayType* AT,
virtual void handleConstantArray( const ArrayType* AT,
std::vector<Constant*>& Elements,
unsigned TypeSlot,
Constant* ArrayVal ) {
if (os) {
*os << " ARRAY: ";
WriteTypeSymbolic(*os,AT,M);
WriteTypeSymbolic(*os,AT,M);
*os << " TypeSlot=" << TypeSlot << "\n";
for ( unsigned i = 0; i < Elements.size(); ++i ) {
*os << " #" << i;
@ -459,7 +459,7 @@ public:
WriteTypeSymbolic(*os,ST,M);
*os << "\n";
for ( unsigned i = 0; i < Elements.size(); ++i ) {
*os << " #" << i << " "; Elements[i]->print(*os);
*os << " #" << i << " "; Elements[i]->print(*os);
*os << "\n";
}
*os << " Value=";
@ -470,11 +470,11 @@ public:
bca.numValues++;
}
virtual void handleConstantPacked(
const PackedType* PT,
virtual void handleConstantPacked(
const PackedType* PT,
std::vector<Constant*>& Elements,
unsigned TypeSlot,
Constant* PackedVal)
unsigned TypeSlot,
Constant* PackedVal)
{
if (os) {
*os << " PACKD: ";
@ -494,7 +494,7 @@ public:
bca.numValues++;
}
virtual void handleConstantPointer( const PointerType* PT,
virtual void handleConstantPointer( const PointerType* PT,
unsigned Slot, GlobalValue* GV ) {
if (os) {
*os << " PNTR: ";
@ -510,14 +510,14 @@ public:
virtual void handleConstantString( const ConstantArray* CA ) {
if (os) {
*os << " STRNG: ";
CA->print(*os);
CA->print(*os);
*os << "\n";
}
bca.numConstants++;
bca.numValues++;
}
virtual void handleGlobalConstantsEnd() {
virtual void handleGlobalConstantsEnd() {
if (os)
*os << " } END BLOCK: GlobalConstants\n";
@ -574,38 +574,38 @@ public:
/// @brief Utility for printing a titled unsigned value with
/// an aligned colon.
inline static void print(std::ostream& Out, const char*title,
inline static void print(std::ostream& Out, const char*title,
unsigned val, bool nl = true ) {
Out << std::setw(30) << std::right << title
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << val << "\n";
}
/// @brief Utility for printing a titled double value with an
/// aligned colon
inline static void print(std::ostream&Out, const char*title,
inline static void print(std::ostream&Out, const char*title,
double val ) {
Out << std::setw(30) << std::right << title
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << val << "\n" ;
}
/// @brief Utility for printing a titled double value with a
/// percentage and aligned colon.
inline static void print(std::ostream&Out, const char*title,
inline static void print(std::ostream&Out, const char*title,
double top, double bot ) {
Out << std::setw(30) << std::right << title
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::setw(9) << std::setprecision(6) << top
<< " (" << std::left << std::setw(0) << std::setprecision(4)
<< std::setw(9) << std::setprecision(6) << top
<< " (" << std::left << std::setw(0) << std::setprecision(4)
<< (top/bot)*100.0 << "%)\n";
}
/// @brief Utility for printing a titled string value with
/// an aligned colon.
inline static void print(std::ostream&Out, const char*title,
inline static void print(std::ostream&Out, const char*title,
std::string val, bool nl = true) {
Out << std::setw(30) << std::right << title
Out << std::setw(30) << std::right << title
<< std::setw(0) << ": "
<< std::left << val << (nl ? "\n" : "");
}
@ -626,33 +626,33 @@ void PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
print(Out, "Module Bytes",
double(bca.BlockSizes[BytecodeFormat::ModuleBlockID]),
double(bca.byteSize));
print(Out, "Function Bytes",
print(Out, "Function Bytes",
double(bca.BlockSizes[BytecodeFormat::FunctionBlockID]),
double(bca.byteSize));
print(Out, "Global Types Bytes",
print(Out, "Global Types Bytes",
double(bca.BlockSizes[BytecodeFormat::GlobalTypePlaneBlockID]),
double(bca.byteSize));
print(Out, "Constant Pool Bytes",
print(Out, "Constant Pool Bytes",
double(bca.BlockSizes[BytecodeFormat::ConstantPoolBlockID]),
double(bca.byteSize));
print(Out, "Module Globals Bytes",
print(Out, "Module Globals Bytes",
double(bca.BlockSizes[BytecodeFormat::ModuleGlobalInfoBlockID]),
double(bca.byteSize));
print(Out, "Instruction List Bytes",
print(Out, "Instruction List Bytes",
double(bca.BlockSizes[BytecodeFormat::InstructionListBlockID]),
double(bca.byteSize));
print(Out, "Compaction Table Bytes",
print(Out, "Compaction Table Bytes",
double(bca.BlockSizes[BytecodeFormat::CompactionTableBlockID]),
double(bca.byteSize));
print(Out, "Symbol Table Bytes",
print(Out, "Symbol Table Bytes",
double(bca.BlockSizes[BytecodeFormat::SymbolTableBlockID]),
double(bca.byteSize));
print(Out, "Alignment Bytes",
print(Out, "Alignment Bytes",
double(bca.numAlignment), double(bca.byteSize));
print(Out, "Block Header Bytes",
print(Out, "Block Header Bytes",
double(bca.BlockSizes[BytecodeFormat::Reserved_DoNotUse]),
double(bca.byteSize));
print(Out, "Dependent Libraries Bytes", double(bca.libSize),
print(Out, "Dependent Libraries Bytes", double(bca.libSize),
double(bca.byteSize));
print(Out, "Number Of Bytecode Blocks", bca.numBlocks);
print(Out, "Number Of Functions", bca.numFunctions);
@ -668,7 +668,7 @@ void PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
print(Out, "Number Of Symbol Tables", bca.numSymTab);
print(Out, "Number Of Dependent Libs", bca.numLibraries);
print(Out, "Total Instruction Size", bca.instructionSize);
print(Out, "Average Instruction Size",
print(Out, "Average Instruction Size",
double(bca.instructionSize)/double(bca.numInstructions));
print(Out, "Maximum Type Slot Number", bca.maxTypeSlot);
@ -680,16 +680,16 @@ void PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
print(Out, "# of VBR 64-bit Integers", bca.vbrCount64);
print(Out, "# of VBR Compressed Bytes", bca.vbrCompBytes);
print(Out, "# of VBR Expanded Bytes", bca.vbrExpdBytes);
print(Out, "Bytes Saved With VBR",
print(Out, "Bytes Saved With VBR",
double(bca.vbrExpdBytes)-double(bca.vbrCompBytes),
double(bca.vbrExpdBytes));
if (bca.detailedResults) {
Out << "\nDetailed Analysis Of " << bca.ModuleId << " Functions:\n";
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator I =
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator I =
bca.FunctionInfo.begin();
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator E =
std::map<const Function*,BytecodeAnalysis::BytecodeFunctionInfo>::iterator E =
bca.FunctionInfo.end();
while ( I != E ) {
@ -704,14 +704,14 @@ void PrintBytecodeAnalysis(BytecodeAnalysis& bca, std::ostream& Out )
print(Out, "Long Instructions", I->second.longInstructions);
print(Out, "Operands", I->second.numOperands);
print(Out, "Instruction Size", I->second.instructionSize);
print(Out, "Average Instruction Size",
print(Out, "Average Instruction Size",
double(I->second.instructionSize) / I->second.numInstructions);
print(Out, "Bytes Per Instruction", I->second.density);
print(Out, "# of VBR 32-bit Integers", I->second.vbrCount32);
print(Out, "# of VBR 64-bit Integers", I->second.vbrCount64);
print(Out, "# of VBR Compressed Bytes", I->second.vbrCompBytes);
print(Out, "# of VBR Expanded Bytes", I->second.vbrExpdBytes);
print(Out, "Bytes Saved With VBR",
print(Out, "Bytes Saved With VBR",
double(I->second.vbrExpdBytes) - I->second.vbrCompBytes),
double(I->second.vbrExpdBytes);
}

View File

@ -1,15 +1,15 @@
//===- Reader.cpp - Code to read bytecode files ---------------------------===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Reader.h
//
// Note that this library should be as fast as possible, reentrant, and
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Allow passing in an option to ignore the symbol table
@ -39,7 +39,7 @@ namespace {
void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
public:
Use Op;
ConstantPlaceHolder(const Type *Ty)
ConstantPlaceHolder(const Type *Ty)
: ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
Op(UndefValue::get(Type::IntTy), this) {
}
@ -77,16 +77,16 @@ inline void BytecodeReader::align32() {
if (hasAlignment) {
BufPtr Save = At;
At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
if (At > Save)
if (At > Save)
if (Handler) Handler->handleAlignment(At - Save);
if (At > BlockEnd)
if (At > BlockEnd)
error("Ran out of data while aligning!");
}
}
/// Read a whole unsigned integer
inline unsigned BytecodeReader::read_uint() {
if (At+4 > BlockEnd)
if (At+4 > BlockEnd)
error("Ran out of data reading uint!");
At += 4;
return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
@ -97,9 +97,9 @@ inline unsigned BytecodeReader::read_vbr_uint() {
unsigned Shift = 0;
unsigned Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
if (At == BlockEnd)
error("Ran out of data reading vbr_uint!");
Result |= (unsigned)((*At++) & 0x7F) << Shift;
Shift += 7;
@ -113,9 +113,9 @@ inline uint64_t BytecodeReader::read_vbr_uint64() {
unsigned Shift = 0;
uint64_t Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
if (At == BlockEnd)
error("Ran out of data reading vbr_uint64!");
Result |= (uint64_t)((*At++) & 0x7F) << Shift;
Shift += 7;
@ -151,7 +151,7 @@ inline std::string BytecodeReader::read_str() {
inline void BytecodeReader::read_data(void *Ptr, void *End) {
unsigned char *Start = (unsigned char *)Ptr;
unsigned Amount = (unsigned char *)End - Start;
if (At+Amount > BlockEnd)
if (At+Amount > BlockEnd)
error("Ran out of data!");
std::copy(At, At+Amount, Start);
At += Amount;
@ -178,9 +178,9 @@ inline void BytecodeReader::read_double(double& DoubleVal) {
double d;
uint64_t i;
} DoubleUnion;
DoubleUnion.i = (uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
DoubleUnion.i = (uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
(uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
(uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
(uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
(uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
At+=sizeof(uint64_t);
DoubleVal = DoubleUnion.d;
@ -192,10 +192,10 @@ inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
Type = read_uint();
Size = read_uint();
switch (Type) {
case BytecodeFormat::Reserved_DoNotUse :
case BytecodeFormat::Reserved_DoNotUse :
error("Reserved_DoNotUse used as Module Type?");
Type = BytecodeFormat::ModuleBlockID; break;
case BytecodeFormat::Module:
case BytecodeFormat::Module:
Type = BytecodeFormat::ModuleBlockID; break;
case BytecodeFormat::Function:
Type = BytecodeFormat::FunctionBlockID; break;
@ -238,8 +238,8 @@ inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
/// 1.3 this changed so that Type does not derive from Value. Consequently,
/// the BytecodeReader's containers for Values can't contain Types because
/// there's no inheritance relationship. This means that the "Type Type"
/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
/// whenever a bytecode construct must have both types and values together,
/// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
/// whenever a bytecode construct must have both types and values together,
/// the types are always read/written first and then the Values. Furthermore
/// since Type::TypeTyID no longer exists, its value (12) now corresponds to
/// Type::LabelTyID. In order to overcome this we must "sanitize" all the
@ -249,7 +249,7 @@ inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
/// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
/// function returns true, otherwise false. This helps detect situations
/// where the pre 1.3 bytecode is indicating that what follows is a type.
/// @returns true iff type id corresponds to pre 1.3 "type type"
/// @returns true iff type id corresponds to pre 1.3 "type type"
inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
if (TypeId == Type::LabelTyID) {
@ -342,7 +342,7 @@ unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
if (!CompactionTypes.empty()) {
for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
if (CompactionTypes[i].first == Ty)
return Type::FirstDerivedTyID + i;
return Type::FirstDerivedTyID + i;
error("Couldn't find type specified in compaction table!");
}
@ -352,7 +352,7 @@ unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
FunctionTypes.end(), Ty);
if (I != FunctionTypes.end())
return Type::FirstDerivedTyID + ModuleTypes.size() +
return Type::FirstDerivedTyID + ModuleTypes.size() +
(&*I - &FunctionTypes[0]);
// Check the module level types now...
@ -390,8 +390,8 @@ unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
}
/// Retrieve a value of a given type and slot number, possibly creating
/// it if it doesn't already exist.
/// Retrieve a value of a given type and slot number, possibly creating
/// it if it doesn't already exist.
Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
unsigned Num = oNum;
@ -424,8 +424,8 @@ Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
}
}
if (FunctionValues.size() > type &&
FunctionValues[type] &&
if (FunctionValues.size() > type &&
FunctionValues[type] &&
Num < FunctionValues[type]->size())
return FunctionValues[type]->getOperand(Num);
@ -447,8 +447,8 @@ Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
throw "Can't create placeholder for value of type slot #" + utostr(type);
}
/// This is just like getValue, but when a compaction table is in use, it
/// is ignored. Also, no forward references or other fancy features are
/// This is just like getValue, but when a compaction table is in use, it
/// is ignored. Also, no forward references or other fancy features are
/// supported.
Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
if (SlotNo == 0)
@ -467,11 +467,11 @@ Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
SlotNo >= ModuleValues[TyID]->size()) {
if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
error("Corrupt compaction table entry!"
+ utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ utostr(ModuleValues.size()));
else
else
error("Corrupt compaction table entry!"
+ utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ utostr(ModuleValues.size()) + ", "
+ utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
+ ", "
@ -483,14 +483,14 @@ Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
/// Just like getValue, except that it returns a null pointer
/// only on error. It always returns a constant (meaning that if the value is
/// defined, but is not a constant, that is an error). If the specified
/// constant hasn't been parsed yet, a placeholder is defined and used.
/// constant hasn't been parsed yet, a placeholder is defined and used.
/// Later, after the real value is parsed, the placeholder is eliminated.
Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
if (Value *V = getValue(TypeSlot, Slot, false))
if (Constant *C = dyn_cast<Constant>(V))
return C; // If we already have the value parsed, just return it
else
error("Value for slot " + utostr(Slot) +
error("Value for slot " + utostr(Slot) +
" is expected to be a constant!");
std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
@ -502,7 +502,7 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
// Create a placeholder for the constant reference and
// keep track of the fact that we have a forward ref to recycle it
Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
// Keep track of the fact that we have a forward ref to recycle it
ConstantFwdRefs.insert(I, std::make_pair(Key, C));
return C;
@ -516,7 +516,7 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
/// As values are created, they are inserted into the appropriate place
/// with this method. The ValueTable argument must be one of ModuleValues
/// or FunctionValues data members of this class.
unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
ValueTable &ValueTab) {
assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
!hasImplicitNull(type) &&
@ -584,7 +584,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
// --------------------------
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
// 31-24: Operand #2
//
iType = (Op >> 8) & 255;
Oprnds[0] = (Op >> 16) & 255;
@ -646,20 +646,20 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
getValue(iType, Oprnds[1]));
switch (Opcode) {
default:
if (Result == 0)
default:
if (Result == 0)
error("Illegal instruction read!");
break;
case Instruction::VAArg:
Result = new VAArgInst(getValue(iType, Oprnds[0]),
Result = new VAArgInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
break;
case Instruction::VANext:
Result = new VANextInst(getValue(iType, Oprnds[0]),
Result = new VANextInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
break;
case Instruction::Cast:
Result = new CastInst(getValue(iType, Oprnds[0]),
Result = new CastInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
break;
case Instruction::Select:
@ -698,7 +698,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
if (Oprnds.size() == 1)
Result = new BranchInst(getBasicBlock(Oprnds[0]));
else if (Oprnds.size() == 3)
Result = new BranchInst(getBasicBlock(Oprnds[0]),
Result = new BranchInst(getBasicBlock(Oprnds[0]),
getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
else
error("Invalid number of operands for a 'br' instruction!");
@ -750,13 +750,13 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
// Read all of the fixed arguments
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
FirstVariableOperand = FTy->getNumParams();
if ((Oprnds.size()-FirstVariableOperand) & 1)
if ((Oprnds.size()-FirstVariableOperand) & 1)
error("Invalid call instruction!"); // Must be pairs of type/value
for (unsigned i = FirstVariableOperand, e = Oprnds.size();
for (unsigned i = FirstVariableOperand, e = Oprnds.size();
i != e; i += 2)
Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
}
@ -765,16 +765,16 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
break;
}
case Instruction::Invoke: {
if (Oprnds.size() < 3)
if (Oprnds.size() < 3)
error("Invalid invoke instruction!");
Value *F = getValue(iType, Oprnds[0]);
// Check to make sure we have a pointer to function type
const PointerType *PTy = dyn_cast<PointerType>(F->getType());
if (PTy == 0)
if (PTy == 0)
error("Invoke to non function pointer value!");
const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
if (FTy == 0)
if (FTy == 0)
error("Invoke to non function pointer value!");
std::vector<Value *> Params;
@ -797,12 +797,12 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Normal = getBasicBlock(Oprnds[0]);
Except = getBasicBlock(Oprnds[1]);
unsigned FirstVariableArgument = FTy->getNumParams()+2;
for (unsigned i = 2; i != FirstVariableArgument; ++i)
Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
Oprnds[i]));
if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
error("Invalid invoke instruction!");
@ -814,7 +814,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
break;
}
case Instruction::Malloc:
if (Oprnds.size() > 2)
if (Oprnds.size() > 2)
error("Invalid malloc instruction!");
if (!isa<PointerType>(InstTy))
error("Invalid malloc instruction!");
@ -825,13 +825,13 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
break;
case Instruction::Alloca:
if (Oprnds.size() > 2)
if (Oprnds.size() > 2)
error("Invalid alloca instruction!");
if (!isa<PointerType>(InstTy))
error("Invalid alloca instruction!");
Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
Oprnds.size() ? getValue(Type::UIntTyID,
Oprnds.size() ? getValue(Type::UIntTyID,
Oprnds[0]) :0);
break;
case Instruction::Free:
@ -848,8 +848,8 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
const Type *NextTy = InstTy;
for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
if (!TopTy)
error("Invalid getelementptr instruction!");
if (!TopTy)
error("Invalid getelementptr instruction!");
unsigned ValIdx = Oprnds[i];
unsigned IdxTy = 0;
@ -894,7 +894,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
break;
case 63: // volatile store
case 63: // volatile store
case Instruction::Store: {
if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
error("Invalid store instruction!");
@ -913,7 +913,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
Result = new UnreachableInst();
break;
} // end switch(Opcode)
} // end switch(Opcode)
unsigned TypeSlot;
if (Result->getType() == InstTy)
@ -945,7 +945,7 @@ BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
return ParsedBasicBlocks[ID] = new BasicBlock();
}
/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
/// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
/// This method reads in one of the basicblock packets. This method is not used
/// for bytecode files after LLVM 1.0
/// @returns The basic block constructed.
@ -970,7 +970,7 @@ BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
}
/// Parse all of the BasicBlock's & Instruction's in the body of a function.
/// In post 1.0 bytecode files, we no longer emit basic block individually,
/// In post 1.0 bytecode files, we no longer emit basic block individually,
/// in order to avoid per-basic-block overhead.
/// @returns Rhe number of basic blocks encountered.
unsigned BytecodeReader::ParseInstructionList(Function* F) {
@ -1071,7 +1071,7 @@ void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
if (Handler) Handler->handleSymbolTableEnd();
}
/// Read in the types portion of a compaction table.
/// Read in the types portion of a compaction table.
void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = 0;
@ -1089,7 +1089,7 @@ void BytecodeReader::ParseCompactionTable() {
// Notify handler that we're beginning a compaction table.
if (Handler) Handler->handleCompactionTableBegin();
// In LLVM 1.3 Type no longer derives from Value. So,
// In LLVM 1.3 Type no longer derives from Value. So,
// we always write them first in the compaction table
// because they can't occupy a "type plane" where the
// Values reside.
@ -1155,10 +1155,10 @@ void BytecodeReader::ParseCompactionTable() {
// Notify handler that the compaction table is done.
if (Handler) Handler->handleCompactionTableEnd();
}
// Parse a single type. The typeid is read in first. If its a primitive type
// then nothing else needs to be read, we know how to instantiate it. If its
// a derived type, then additional data is read to fill out the type
// a derived type, then additional data is read to fill out the type
// definition.
const Type *BytecodeReader::ParseType() {
unsigned PrimType = 0;
@ -1168,7 +1168,7 @@ const Type *BytecodeReader::ParseType() {
const Type *Result = 0;
if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
return Result;
switch (PrimType) {
case Type::FunctionTyID: {
const Type *RetType = readSanitizedType();
@ -1176,7 +1176,7 @@ const Type *BytecodeReader::ParseType() {
unsigned NumParams = read_vbr_uint();
std::vector<const Type*> Params;
while (NumParams--)
while (NumParams--)
Params.push_back(readSanitizedType());
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
@ -1248,7 +1248,7 @@ void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
for (unsigned i = 0; i != NumEntries; ++i)
Tab.push_back(OpaqueType::get());
if (Handler)
if (Handler)
Handler->handleTypeList(NumEntries);
// Loop through reading all of the types. Forward types will make use of the
@ -1257,10 +1257,10 @@ void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
for (unsigned i = 0; i != NumEntries; ++i) {
const Type* NewTy = ParseType();
const Type* OldTy = Tab[i].get();
if (NewTy == 0)
if (NewTy == 0)
error("Couldn't parse type!");
// Don't directly push the new type on the Tab. Instead we want to replace
// Don't directly push the new type on the Tab. Instead we want to replace
// the opaque type we previously inserted with the new concrete value. This
// approach helps with forward references to types. The refinement from the
// abstract (opaque) type to the new type causes all uses of the abstract
@ -1279,7 +1279,7 @@ void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint();
@ -1288,7 +1288,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
if (!hasNoUndefValue)
if (--isExprNumArgs == 0)
return UndefValue::get(getType(TypeID));
// FIXME: Encoding of constant exprs could be much more compact!
std::vector<Constant*> ArgVec;
ArgVec.reserve(isExprNumArgs);
@ -1296,18 +1296,18 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
// Bytecode files before LLVM 1.4 need have a missing terminator inst.
if (hasNoUnreachableInst) Opcode++;
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint();
unsigned ArgTypeSlot = 0;
if (read_typeid(ArgTypeSlot))
error("Invalid argument type (type type) for constant value");
// Get the arg value from its slot if it exists, otherwise a placeholder
ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
}
// Construct a ConstantExpr of the appropriate kind
if (isExprNumArgs == 1) { // All one-operand expressions
if (Opcode != Instruction::Cast)
@ -1338,7 +1338,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
} else if (Opcode == Instruction::Select) {
if (ArgVec.size() != 3)
error("Select instruction must have three arguments.");
Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
ArgVec[2]);
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
return Result;
@ -1348,13 +1348,13 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
return Result;
}
}
// Ok, not an ConstantExpr. We now know how to read the given type...
const Type *Ty = getType(TypeID);
switch (Ty->getTypeID()) {
case Type::BoolTyID: {
unsigned Val = read_vbr_uint();
if (Val != 0 && Val != 1)
if (Val != 0 && Val != 1)
error("Invalid boolean value read.");
Constant* Result = ConstantBool::get(Val == 1);
if (Handler) Handler->handleConstantValue(Result);
@ -1365,7 +1365,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val = read_vbr_uint();
if (!ConstantUInt::isValueValidForType(Ty, Val))
if (!ConstantUInt::isValueValidForType(Ty, Val))
error("Invalid unsigned byte/short/int read.");
Constant* Result = ConstantUInt::get(Ty, Val);
if (Handler) Handler->handleConstantValue(Result);
@ -1383,7 +1383,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
case Type::IntTyID: {
case Type::LongTyID:
int64_t Val = read_vbr_int64();
if (!ConstantSInt::isValueValidForType(Ty, Val))
if (!ConstantSInt::isValueValidForType(Ty, Val))
error("Invalid signed byte/short/int/long read.");
Constant* Result = ConstantSInt::get(Ty, Val);
if (Handler) Handler->handleConstantValue(Result);
@ -1432,7 +1432,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
Constant* Result = ConstantStruct::get(ST, Elements);
if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
return Result;
}
}
case Type::PackedTyID: {
const PackedType *PT = cast<PackedType>(Ty);
@ -1451,7 +1451,7 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
const PointerType *PT = cast<PointerType>(Ty);
unsigned Slot = read_vbr_uint();
// Check to see if we have already read this global variable...
Value *Val = getValue(TypeID, Slot, false);
if (Val) {
@ -1472,8 +1472,8 @@ Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
return 0;
}
/// Resolve references for constants. This function resolves the forward
/// referenced constants in the ConstantFwdRefs map. It uses the
/// Resolve references for constants. This function resolves the forward
/// referenced constants in the ConstantFwdRefs map. It uses the
/// replaceAllUsesWith method of Value class to substitute the placeholder
/// instance with the actual instance.
void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
@ -1497,14 +1497,14 @@ void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
error("String constant data invalid!");
const ArrayType *ATy = cast<ArrayType>(Ty);
if (ATy->getElementType() != Type::SByteTy &&
ATy->getElementType() != Type::UByteTy)
error("String constant data invalid!");
// Read character data. The type tells us how long the string is.
char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
read_data(Data, Data+ATy->getNumElements());
std::vector<Constant*> Elements(ATy->getNumElements());
@ -1524,7 +1524,7 @@ void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
}
/// Parse the constant pool.
void BytecodeReader::ParseConstantPool(ValueTable &Tab,
void BytecodeReader::ParseConstantPool(ValueTable &Tab,
TypeListTy &TypeTab,
bool isFunction) {
if (Handler) Handler->handleGlobalConstantsBegin();
@ -1574,9 +1574,9 @@ void BytecodeReader::ParseConstantPool(ValueTable &Tab,
if (!ConstantFwdRefs.empty()) {
ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
Constant* missingConst = I->second;
error(utostr(ConstantFwdRefs.size()) +
" unresolved constant reference exist. First one is '" +
missingConst->getName() + "' of type '" +
error(utostr(ConstantFwdRefs.size()) +
" unresolved constant reference exist. First one is '" +
missingConst->getName() + "' of type '" +
missingConst->getType()->getDescription() + "'.");
}
@ -1658,7 +1658,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
InsertedArguments = true;
}
if (BlockNum)
if (BlockNum)
error("Already parsed basic blocks!");
BlockNum = ParseInstructionList(F);
break;
@ -1670,7 +1670,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
default:
At += Size;
if (OldAt > At)
if (OldAt > At)
error("Wrapped around reading bytecode.");
break;
}
@ -1709,7 +1709,7 @@ void BytecodeReader::ParseFunctionBody(Function* F) {
/// This function parses LLVM functions lazily. It obtains the type of the
/// function and records where the body of the function is in the bytecode
/// buffer. The caller can then use the ParseNextFunction and
/// buffer. The caller can then use the ParseNextFunction and
/// ParseAllFunctionBodies to get handler events for the functions.
void BytecodeReader::ParseFunctionLazily() {
if (FunctionSignatureList.empty())
@ -1729,9 +1729,9 @@ void BytecodeReader::ParseFunctionLazily() {
At = BlockEnd;
}
/// The ParserFunction method lazily parses one function. Use this method to
/// casue the parser to parse a specific function in the module. Note that
/// this will remove the function from what is to be included by
/// The ParserFunction method lazily parses one function. Use this method to
/// casue the parser to parse a specific function in the module. Note that
/// this will remove the function from what is to be included by
/// ParseAllFunctionBodies.
/// @see ParseAllFunctionBodies
/// @see ParseBytecode
@ -1811,7 +1811,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
case 2: Linkage = GlobalValue::AppendingLinkage; break;
case 3: Linkage = GlobalValue::InternalLinkage; break;
case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
default:
default:
error("Unknown linkage type: " + utostr(LinkageID));
Linkage = GlobalValue::InternalLinkage;
break;
@ -1834,7 +1834,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
insertValue(GV, SlotNo, ModuleValues);
unsigned initSlot = 0;
if (hasInitializer) {
if (hasInitializer) {
initSlot = read_vbr_uint();
GlobalInits.push_back(std::make_pair(GV, initSlot));
}
@ -1858,17 +1858,17 @@ void BytecodeReader::ParseModuleGlobalInfo() {
const Type *Ty = getType(FnSignature >> 5);
if (!isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
error("Function not a pointer to function type! Ty = " +
error("Function not a pointer to function type! Ty = " +
Ty->getDescription());
}
// We create functions by passing the underlying FunctionType to create...
const FunctionType* FTy =
const FunctionType* FTy =
cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
// Insert the place holder.
Function* Func = new Function(FTy, GlobalValue::ExternalLinkage,
Function* Func = new Function(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
insertValue(Func, FnSignature >> 5, ModuleValues);
@ -1889,7 +1889,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
FnSignature = (FnSignature << 5) + 1;
}
// Now that the function signature list is set up, reverse it so that we can
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
@ -1937,7 +1937,7 @@ void BytecodeReader::ParseVersionInfo() {
bool hasNoEndianness = Version & 4;
bool hasNoPointerSize = Version & 8;
RevisionNum = Version >> 4;
// Default values for the current bytecode version
@ -1977,12 +1977,12 @@ void BytecodeReader::ParseVersionInfo() {
// LLVM 1.2 and before had the Type class derive from Value class. This
// changed in release 1.3 and consequently LLVM 1.3 bytecode files are
// written differently because Types can no longer be part of the
// written differently because Types can no longer be part of the
// type planes for Values.
hasTypeDerivedFromValue = true;
// FALL THROUGH
case 2: // 1.2.5 (Not Released)
// LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
@ -1999,7 +1999,7 @@ void BytecodeReader::ParseVersionInfo() {
// in various places and to ensure consistency.
has32BitTypes = true;
// LLVM 1.2 and earlier did not provide a target triple nor a list of
// LLVM 1.2 and earlier did not provide a target triple nor a list of
// libraries on which the bytecode is dependent. LLVM 1.3 provides these
// features, for use in future versions of LLVM.
hasNoDependentLibraries = true;
@ -2008,13 +2008,13 @@ void BytecodeReader::ParseVersionInfo() {
case 3: // LLVM 1.3 (Released)
// LLVM 1.3 and earlier caused alignment bytes to be written on some block
// boundaries and at the end of some strings. In extreme cases (e.g. lots
// boundaries and at the end of some strings. In extreme cases (e.g. lots
// of GEP references to a constant array), this can increase the file size
// by 30% or more. In version 1.4 alignment is done away with completely.
hasAlignment = true;
// FALL THROUGH
case 4: // 1.3.1 (Not Released)
// In version 4, we did not support the 'undef' constant.
hasNoUndefValue = true;
@ -2034,8 +2034,8 @@ void BytecodeReader::ParseVersionInfo() {
break;
// FIXME: NONE of this is implemented yet!
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// value. In version 5, we made this consistent.
hasInconsistentBBSlotNums = true;
@ -2090,7 +2090,7 @@ void BytecodeReader::ParseModule() {
SeenGlobalTypePlane = true;
break;
case BytecodeFormat::ModuleGlobalInfoBlockID:
case BytecodeFormat::ModuleGlobalInfoBlockID:
if (SeenModuleGlobalInfo)
error("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
@ -2133,7 +2133,7 @@ void BytecodeReader::ParseModule() {
const llvm::PointerType* GVType = GV->getType();
unsigned TypeSlot = getTypeSlot(GVType->getElementType());
if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
if (GV->hasInitializer())
if (GV->hasInitializer())
error("Global *already* has an initializer?!");
if (Handler) Handler->handleGlobalInitializer(GV,CV);
GV->setInitializer(CV);
@ -2149,7 +2149,7 @@ void BytecodeReader::ParseModule() {
/// This function completely parses a bytecode buffer given by the \p Buf
/// and \p Length parameters.
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
const std::string &ModuleID) {
try {
@ -2198,7 +2198,7 @@ void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
Type = read_uint();
Size = read_uint();
if (Type != BytecodeFormat::ModuleBlockID) {
error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
+ utostr(Size));
}
@ -2220,7 +2220,7 @@ void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
error("Function expected, but bytecode stream ended!");
// Tell the handler we're done with the module
if (Handler)
if (Handler)
Handler->handleModuleEnd(ModuleID);
// Tell the handler we're finished the parse

View File

@ -1,13 +1,13 @@
//===-- Reader.h - Interface To Bytecode Reading ----------------*- C++ -*-===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Reid Spencer and is distributed under the
// This file was developed by Reid Spencer and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This header file defines the interface to the Bytecode Reader which is
// This header file defines the interface to the Bytecode Reader which is
// responsible for correctly interpreting bytecode files (backwards compatible)
// and materializing a module from the bytecode read.
//
@ -32,8 +32,8 @@ class BytecodeHandler; ///< Forward declare the handler interface
/// This class defines the interface for parsing a buffer of bytecode. The
/// parser itself takes no action except to call the various functions of
/// the handler interface. The parser's sole responsibility is the correct
/// interpretation of the bytecode buffer. The handler is responsible for
/// instantiating and keeping track of all values. As a convenience, the parser
/// interpretation of the bytecode buffer. The handler is responsible for
/// instantiating and keeping track of all values. As a convenience, the parser
/// is responsible for materializing types and will pass them through the
/// handler interface as necessary.
/// @see BytecodeHandler
@ -44,13 +44,13 @@ class BytecodeReader : public ModuleProvider {
/// @{
public:
/// @brief Default constructor. By default, no handler is used.
BytecodeReader(BytecodeHandler* h = 0) {
BytecodeReader(BytecodeHandler* h = 0) {
decompressedBlock = 0;
Handler = h;
}
~BytecodeReader() {
freeState();
~BytecodeReader() {
freeState();
if (decompressedBlock) {
::free(decompressedBlock);
decompressedBlock = 0;
@ -104,7 +104,7 @@ public:
/// @brief A 2 dimensional table of values
typedef std::vector<ValueList*> ValueTable;
/// This map is needed so that forward references to constants can be looked
/// This map is needed so that forward references to constants can be looked
/// up by Type and slot number when resolving those references.
/// @brief A mapping of a Type/slot pair to a Constant*.
typedef std::map<std::pair<unsigned,unsigned>, Constant*> ConstantRefsType;
@ -112,7 +112,7 @@ public:
/// For lazy read-in of functions, we need to save the location in the
/// data stream where the function is located. This structure provides that
/// information. Lazy read-in is used mostly by the JIT which only wants to
/// resolve functions as it needs them.
/// resolve functions as it needs them.
/// @brief Keeps pointers to function contents for later use.
struct LazyFunctionInfo {
const unsigned char *Buf, *EndBuf;
@ -160,7 +160,7 @@ public:
}
/// This method is abstract in the parent ModuleProvider class. Its
/// implementation is identical to ParseAllFunctionBodies.
/// implementation is identical to ParseAllFunctionBodies.
/// @see ParseAllFunctionBodies
/// @brief Make the whole module materialize
virtual Module* materializeModule() {
@ -218,7 +218,7 @@ protected:
unsigned ParseInstructionList(
Function* F ///< The function into which BBs will be inserted
);
/// @brief Parse a single instruction.
void ParseInstruction(
std::vector<unsigned>& Args, ///< The arguments to be filled in
@ -226,7 +226,7 @@ protected:
);
/// @brief Parse the whole constant pool
void ParseConstantPool(ValueTable& Values, TypeListTy& Types,
void ParseConstantPool(ValueTable& Values, TypeListTy& Types,
bool isFunction);
/// @brief Parse a single constant value
@ -245,7 +245,7 @@ protected:
/// @name Data
/// @{
private:
char* decompressedBlock; ///< Result of decompression
char* decompressedBlock; ///< Result of decompression
BufPtr MemStart; ///< Start of the memory buffer
BufPtr MemEnd; ///< End of the memory buffer
BufPtr BlockStart; ///< Start of current block being parsed
@ -291,14 +291,14 @@ private:
bool hasLongBlockHeaders;
/// LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
/// this has been reduced to vbr_uint24. It shouldn't make much difference
/// this has been reduced to vbr_uint24. It shouldn't make much difference
/// since we haven't run into a module with > 24 million types, but for safety
/// the 24-bit restriction has been enforced in 1.3 to free some bits in
/// various places and to ensure consistency. In particular, global vars are
/// restricted to 24-bits.
bool has32BitTypes;
/// LLVM 1.2 and earlier did not provide a target triple nor a list of
/// LLVM 1.2 and earlier did not provide a target triple nor a list of
/// libraries on which the bytecode is dependent. LLVM 1.3 provides these
/// features, for use in future versions of LLVM.
bool hasNoDependentLibraries;
@ -321,8 +321,8 @@ private:
// unreachable instruction.
bool hasNoUnreachableInst;
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// In version 5, basic blocks have a minimum index of 0 whereas all the
// other primitives have a minimum index of 1 (because 0 is the "null"
// value. In version 5, we made this consistent.
bool hasInconsistentBBSlotNums;
@ -388,11 +388,11 @@ private:
// and its FunctionSlot.
LazyFunctionMap LazyFunctionLoadMap;
/// This stores the parser's handler which is used for handling tasks other
/// just than reading bytecode into the IR. If this is non-null, calls on
/// the (polymorphic) BytecodeHandler interface (see llvm/Bytecode/Handler.h)
/// will be made to report the logical structure of the bytecode file. What
/// the handler does with the events it receives is completely orthogonal to
/// This stores the parser's handler which is used for handling tasks other
/// just than reading bytecode into the IR. If this is non-null, calls on
/// the (polymorphic) BytecodeHandler interface (see llvm/Bytecode/Handler.h)
/// will be made to report the logical structure of the bytecode file. What
/// the handler does with the events it receives is completely orthogonal to
/// the business of parsing the bytecode and building the IR. This is used,
/// for example, by the llvm-abcd tool for analysis of byte code.
/// @brief Handler for parsing events.
@ -428,9 +428,9 @@ private:
const Type *getGlobalTableType(unsigned TypeId);
/// This is just like getTypeSlot, but when a compaction table is in use,
/// it is ignored.
/// it is ignored.
unsigned getGlobalTableTypeSlot(const Type *Ty);
/// @brief Get a value from its typeid and slot number
Value* getValue(unsigned TypeID, unsigned num, bool Create = true);
@ -456,7 +456,7 @@ private:
/// @brief Insert the arguments of a function.
void insertArguments(Function* F );
/// @brief Resolve all references to the placeholder (if any) for the
/// @brief Resolve all references to the placeholder (if any) for the
/// given constant.
void ResolveReferencesToConstant(Constant *C, unsigned Typ, unsigned Slot);
@ -534,7 +534,7 @@ private:
/// @brief A function for creating a BytecodeAnalzer as a handler
/// for the Bytecode reader.
BytecodeHandler* createBytecodeAnalyzerHandler(BytecodeAnalysis& bca,
BytecodeHandler* createBytecodeAnalyzerHandler(BytecodeAnalysis& bca,
std::ostream* output );

View File

@ -1,10 +1,10 @@
//===- ReaderWrappers.cpp - Parse bytecode from file or buffer -----------===//
//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//
//===----------------------------------------------------------------------===//
//
// This file implements loading and parsing a bytecode file and parsing a
@ -43,7 +43,7 @@ namespace {
}
BytecodeFileReader::BytecodeFileReader(const std::string &Filename,
llvm::BytecodeHandler* H )
llvm::BytecodeHandler* H )
: BytecodeReader(H)
, mapFile( sys::Path(Filename))
{
@ -113,7 +113,7 @@ BytecodeBufferReader::~BytecodeBufferReader() {
namespace {
/// BytecodeStdinReader - parses a bytecode file from stdin
///
///
class BytecodeStdinReader : public BytecodeReader {
private:
std::vector<unsigned char> FileData;
@ -127,7 +127,7 @@ namespace {
};
}
BytecodeStdinReader::BytecodeStdinReader( BytecodeHandler* H )
BytecodeStdinReader::BytecodeStdinReader( BytecodeHandler* H )
: BytecodeReader(H)
{
char Buffer[4096*4];
@ -156,7 +156,7 @@ BytecodeStdinReader::BytecodeStdinReader( BytecodeHandler* H )
// new style varargs for backwards compatibility.
static ModuleProvider *CheckVarargs(ModuleProvider *MP) {
Module *M = MP->getModule();
// Check to see if va_start takes arguments...
Function *F = M->getNamedFunction("llvm.va_start");
if (F == 0) return MP; // No varargs use, just return.
@ -172,11 +172,11 @@ static ModuleProvider *CheckVarargs(ModuleProvider *MP) {
// the user.
if (Function *F = M->getNamedFunction("llvm.va_start")) {
assert(F->arg_size() == 1 && "Obsolete va_start takes 1 argument!");
const Type *RetTy = F->getFunctionType()->getParamType(0);
RetTy = cast<PointerType>(RetTy)->getElementType();
Function *NF = M->getOrInsertFunction("llvm.va_start", RetTy, 0);
for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(*I++)) {
Value *V = new CallInst(NF, "", CI);
@ -192,7 +192,7 @@ static ModuleProvider *CheckVarargs(ModuleProvider *MP) {
ArgTy = cast<PointerType>(ArgTy)->getElementType();
Function *NF = M->getOrInsertFunction("llvm.va_end", Type::VoidTy,
ArgTy, 0);
for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(*I++)) {
Value *V = new LoadInst(CI->getOperand(1), "", CI);
@ -201,14 +201,14 @@ static ModuleProvider *CheckVarargs(ModuleProvider *MP) {
}
F->setName("");
}
if (Function *F = M->getNamedFunction("llvm.va_copy")) {
assert(F->arg_size() == 2 && "Obsolete va_copy takes 2 argument!");
const Type *ArgTy = F->getFunctionType()->getParamType(0);
ArgTy = cast<PointerType>(ArgTy)->getElementType();
Function *NF = M->getOrInsertFunction("llvm.va_copy", ArgTy,
ArgTy, 0);
for (Value::use_iterator I = F->use_begin(), E = F->use_end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(*I++)) {
Value *V = new CallInst(NF, CI->getOperand(2), "", CI);
@ -226,7 +226,7 @@ static ModuleProvider *CheckVarargs(ModuleProvider *MP) {
/// getBytecodeBufferModuleProvider - lazy function-at-a-time loading from a
/// buffer
ModuleProvider*
ModuleProvider*
llvm::getBytecodeBufferModuleProvider(const unsigned char *Buffer,
unsigned Length,
const std::string &ModuleID,
@ -313,7 +313,7 @@ Module* llvm::AnalyzeBytecodeBuffer(
}
}
bool llvm::GetBytecodeDependentLibraries(const std::string &fname,
bool llvm::GetBytecodeDependentLibraries(const std::string &fname,
Module::LibraryListType& deplibs) {
try {
std::auto_ptr<ModuleProvider> AMP( getBytecodeModuleProvider(fname));
@ -346,7 +346,7 @@ static void getSymbols(Module*M, std::vector<std::string>& symbols) {
bool llvm::GetBytecodeSymbols(const sys::Path& fName,
std::vector<std::string>& symbols) {
try {
std::auto_ptr<ModuleProvider> AMP(
std::auto_ptr<ModuleProvider> AMP(
getBytecodeModuleProvider(fName.toString()));
// Get the module from the provider
@ -363,7 +363,7 @@ bool llvm::GetBytecodeSymbols(const sys::Path& fName,
}
}
ModuleProvider*
ModuleProvider*
llvm::GetBytecodeSymbols(const unsigned char*Buffer, unsigned Length,
const std::string& ModuleID,
std::vector<std::string>& symbols) {