Increasing the inline limit from (overly conservative) 200 to 300. Given each BB costs 20 and each instruction costs 5, 200 means a 4 BB function + 24 instructions (actually less because caller's size also contributes to it).

Furthermore, double the limit when more than 10% of the callee instructions are vector instructions. Multimedia kernels tend to love inlining.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@48725 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evan Cheng 2008-03-24 06:37:48 +00:00
parent 16b412c6e2
commit 8d84d5b62c
5 changed files with 54 additions and 11 deletions

View File

@ -55,6 +55,11 @@ struct Inliner : public CallGraphSCCPass {
///
virtual int getInlineCost(CallSite CS) = 0;
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
// higher threshold to determine if the function call should be inlined.
///
virtual float getInlineFudgeFactor(CallSite CS) = 0;
private:
// InlineThreshold - Cache the value here for easy access.
unsigned InlineThreshold;

View File

@ -41,6 +41,10 @@ namespace llvm {
// NumInsts, NumBlocks - Keep track of how large each function is, which is
// used to estimate the code size cost of inlining it.
unsigned NumInsts, NumBlocks;
// NumVectorInsts - Keep track how many instrctions produce vector values.
// The inliner is being more aggressive with inlining vector kernels.
unsigned NumVectorInsts;
// ArgumentWeights - Each formal argument of the function is inspected to
// see if it is used in any contexts where making it a constant or alloca
@ -48,7 +52,7 @@ namespace llvm {
// entry here.
std::vector<ArgInfo> ArgumentWeights;
FunctionInfo() : NumInsts(0), NumBlocks(0) {}
FunctionInfo() : NumInsts(0), NumBlocks(0), NumVectorInsts(0) {}
/// analyzeFunction - Fill in the current structure with information gleaned
/// from the specified function.
@ -73,7 +77,12 @@ namespace llvm {
// getInlineCost - The heuristic used to determine if we should inline the
// function call or not.
//
int getInlineCost(CallSite CS, SmallPtrSet<const Function *, 16> &NeverInline);
int getInlineCost(CallSite CS,
SmallPtrSet<const Function *, 16> &NeverInline);
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
// higher threshold to determine if the function call should be inlined.
float getInlineFudgeFactor(CallSite CS);
};
}

View File

@ -40,6 +40,9 @@ namespace {
int getInlineCost(CallSite CS) {
return CA.getInlineCost(CS, NeverInline);
}
float getInlineFudgeFactor(CallSite CS) {
return CA.getInlineFudgeFactor(CS);
}
virtual bool doInitialization(CallGraph &CG);
};
char SimpleInliner::ID = 0;

View File

@ -31,9 +31,9 @@ STATISTIC(NumInlined, "Number of functions inlined");
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
namespace {
cl::opt<int> // FIXME: 200 is VERY conservative
InlineLimit("inline-threshold", cl::Hidden, cl::init(200),
cl::desc("Control the amount of inlining to perform (default = 200)"));
cl::opt<int>
InlineLimit("inline-threshold", cl::Hidden, cl::init(400),
cl::desc("Control the amount of inlining to perform (default = 400)"));
}
Inliner::Inliner(const void *ID)
@ -140,7 +140,9 @@ bool Inliner::runOnSCC(const std::vector<CallGraphNode*> &SCC) {
// try to do so.
CallSite CS = CallSites[CSi];
int InlineCost = getInlineCost(CS);
if (InlineCost >= (int)InlineThreshold) {
float FudgeFactor = getInlineFudgeFactor(CS);
if (InlineCost >= (int)(InlineThreshold * FudgeFactor)) {
DOUT << " NOT Inlining: cost=" << InlineCost
<< ", Call: " << *CS.getInstruction();
} else {

View File

@ -93,7 +93,7 @@ unsigned InlineCostAnalyzer::FunctionInfo::
/// analyzeFunction - Fill in the current structure with information gleaned
/// from the specified function.
void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
unsigned NumInsts = 0, NumBlocks = 0;
unsigned NumInsts = 0, NumBlocks = 0, NumVectorInsts = 0;
// Look at the size of the callee. Each basic block counts as 20 units, and
// each instruction counts as 5.
@ -101,6 +101,11 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
II != E; ++II) {
if (isa<DbgInfoIntrinsic>(II)) continue; // Debug intrinsics don't count.
if (isa<PHINode>(II)) continue; // PHI nodes don't count.
if (isa<InsertElementInst>(II) || isa<ExtractElementInst>(II) ||
isa<ShuffleVectorInst>(II) || isa<VectorType>(II->getType()))
++NumVectorInsts;
// Noop casts, including ptr <-> int, don't count.
if (const CastInst *CI = dyn_cast<CastInst>(II)) {
@ -108,7 +113,7 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
isa<PtrToIntInst>(CI))
continue;
} else if (const GetElementPtrInst *GEPI =
dyn_cast<GetElementPtrInst>(II)) {
dyn_cast<GetElementPtrInst>(II)) {
// If a GEP has all constant indices, it will probably be folded with
// a load/store.
bool AllConstant = true;
@ -126,8 +131,9 @@ void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
++NumBlocks;
}
this->NumBlocks = NumBlocks;
this->NumInsts = NumInsts;
this->NumBlocks = NumBlocks;
this->NumInsts = NumInsts;
this->NumVectorInsts = NumVectorInsts;
// Check out all of the arguments to the function, figuring out how much
// code can be eliminated if one of the arguments is a constant.
@ -233,10 +239,28 @@ int InlineCostAnalyzer::getInlineCost(CallSite CS,
//
InlineCost += Caller->size()/20;
// Look at the size of the callee. Each basic block counts as 20 units, and
// each instruction counts as 5.
InlineCost += CalleeFI.NumInsts*5 + CalleeFI.NumBlocks*20;
return InlineCost;
}
// getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
// higher threshold to determine if the function call should be inlined.
float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
Function *Callee = CS.getCalledFunction();
// Get information about the callee...
FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
// If we haven't calculated this information yet, do so now.
if (CalleeFI.NumBlocks == 0)
CalleeFI.analyzeFunction(Callee);
// Be more aggressive if the function contains a good chunk (if it mades up
// at least 10% of the instructions) of vector instructions.
if (CalleeFI.NumVectorInsts > CalleeFI.NumInsts/10)
return 1.5f;
return 1.0f;
}