[SystemZ] Reuse CC results for integer comparisons with zero

This also fixes a bug in the predication of LR to LOCR: I'd forgotten
that with these in-place instruction builds, the implicit operands need
to be added manually.  I think this was latent until now, but is tested
by int-cmp-45.c.  It also adds a CC valid mask to STOC, again tested by
int-cmp-45.c.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187573 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford
2013-08-01 10:39:40 +00:00
parent 3237f88882
commit 8f0ad5ae8f
8 changed files with 969 additions and 59 deletions

View File

@@ -7,18 +7,36 @@
//
//===----------------------------------------------------------------------===//
//
// This pass does two things:
// (1) fuse compares and branches into COMPARE AND BRANCH instructions
// (2) make sure that all branches are in range.
// This pass does three things:
// (1) try to remove compares if CC already contains the required information
// (2) fuse compares and branches into COMPARE AND BRANCH instructions
// (3) make sure that all branches are in range.
//
// We do (1) here rather than earlier because the fused form prevents
// predication.
// We do (1) here rather than earlier because some transformations can
// change the set of available CC values and we generally want those
// transformations to have priority over (1). This is especially true in
// the commonest case where the CC value is used by a single in-range branch
// instruction, since (2) will then be able to fuse the compare and the
// branch instead.
//
// Doing it so late makes it more likely that a register will be reused
// For example, two-address NILF can sometimes be converted into
// three-address RISBLG. NILF produces a CC value that indicates whether
// the low word is zero, but RISBLG does not modify CC at all. On the
// other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
// The CC value produced by NILL isn't useful for our purposes, but the
// value produced by RISBG can be used for any comparison with zero
// (not just equality). So there are some transformations that lose
// CC values (while still being worthwhile) and others that happen to make
// the CC result more useful than it was originally.
//
// We do (2) here rather than earlier because the fused form prevents
// predication. It also has to happen after (1).
//
// Doing (2) so late makes it more likely that a register will be reused
// between the compare and the branch, but it isn't clear whether preventing
// that would be a win or not.
//
// There are several ways in which (2) could be done. One aggressive
// There are several ways in which (3) could be done. One aggressive
// approach is to assume that all branches are in range and successively
// replace those that turn out not to be in range with a longer form
// (branch relaxation). A simple implementation is to continually walk
@@ -156,6 +174,7 @@ namespace {
void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
bool AssumeRelaxed);
TerminatorInfo describeTerminator(MachineInstr *MI);
bool optimizeCompareZero(MachineInstr *PrevCCSetter, MachineInstr *Compare);
bool fuseCompareAndBranch(MachineInstr *Compare);
uint64_t initMBBInfo();
bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
@@ -254,6 +273,15 @@ TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
return Terminator;
}
// Return true if CC is live out of MBB.
static bool isCCLiveOut(MachineBasicBlock *MBB) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(SystemZ::CC))
return true;
return false;
}
// Return true if CC is live after MBBI.
static bool isCCLiveAfter(MachineBasicBlock::iterator MBBI,
const TargetRegisterInfo *TRI) {
@@ -269,12 +297,130 @@ static bool isCCLiveAfter(MachineBasicBlock::iterator MBBI,
return false;
}
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if ((*SI)->isLiveIn(SystemZ::CC))
return true;
return isCCLiveOut(MBB);
}
return false;
// Return true if all uses of the CC value produced by MBBI could make do
// with the CC values in ReusableCCMask. When returning true, point AlterMasks
// to the "CC valid" and "CC mask" operands for each condition.
static bool canRestrictCCMask(MachineBasicBlock::iterator MBBI,
unsigned ReusableCCMask,
SmallVectorImpl<MachineOperand *> &AlterMasks,
const TargetRegisterInfo *TRI) {
MachineBasicBlock *MBB = MBBI->getParent();
MachineBasicBlock::iterator MBBE = MBB->end();
for (++MBBI; MBBI != MBBE; ++MBBI) {
if (MBBI->readsRegister(SystemZ::CC, TRI)) {
// Fail if this isn't a use of CC that we understand.
unsigned MBBIFlags = MBBI->getDesc().TSFlags;
unsigned FirstOpNum;
if (MBBIFlags & SystemZII::CCMaskFirst)
FirstOpNum = 0;
else if (MBBIFlags & SystemZII::CCMaskLast)
FirstOpNum = MBBI->getNumExplicitOperands() - 2;
else
return false;
// Check whether the instruction predicate treats all CC values
// outside of ReusableCCMask in the same way. In that case it
// doesn't matter what those CC values mean.
unsigned CCValid = MBBI->getOperand(FirstOpNum).getImm();
unsigned CCMask = MBBI->getOperand(FirstOpNum + 1).getImm();
unsigned OutValid = ~ReusableCCMask & CCValid;
unsigned OutMask = ~ReusableCCMask & CCMask;
if (OutMask != 0 && OutMask != OutValid)
return false;
AlterMasks.push_back(&MBBI->getOperand(FirstOpNum));
AlterMasks.push_back(&MBBI->getOperand(FirstOpNum + 1));
// Succeed if this was the final use of the CC value.
if (MBBI->killsRegister(SystemZ::CC, TRI))
return true;
}
// Succeed if the instruction redefines CC.
if (MBBI->definesRegister(SystemZ::CC, TRI))
return true;
}
// Fail if there are other uses of CC that we didn't see.
return !isCCLiveOut(MBB);
}
// Try to make Compare redundant with PrevCCSetter, the previous setter of CC,
// by looking for cases where Compare compares the result of PrevCCSetter
// against zero. Return true on success and if Compare can therefore
// be deleted.
bool SystemZLongBranch::optimizeCompareZero(MachineInstr *PrevCCSetter,
MachineInstr *Compare) {
if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
return false;
// Check whether this is a comparison against zero.
if (Compare->getNumExplicitOperands() != 2 ||
!Compare->getOperand(1).isImm() ||
Compare->getOperand(1).getImm() != 0)
return false;
// See which compare-style condition codes are available after PrevCCSetter.
unsigned PrevFlags = PrevCCSetter->getDesc().TSFlags;
unsigned ReusableCCMask = 0;
if (PrevFlags & SystemZII::CCHasZero)
ReusableCCMask |= SystemZ::CCMASK_CMP_EQ;
// For unsigned comparisons with zero, only equality makes sense.
unsigned CompareFlags = Compare->getDesc().TSFlags;
if (!(CompareFlags & SystemZII::IsLogical) &&
(PrevFlags & SystemZII::CCHasOrder))
ReusableCCMask |= SystemZ::CCMASK_CMP_LT | SystemZ::CCMASK_CMP_GT;
if (ReusableCCMask == 0)
return false;
// Make sure that PrevCCSetter sets the value being compared.
unsigned SrcReg = Compare->getOperand(0).getReg();
unsigned SrcSubReg = Compare->getOperand(0).getSubReg();
if (!PrevCCSetter->getOperand(0).isReg() ||
!PrevCCSetter->getOperand(0).isDef() ||
PrevCCSetter->getOperand(0).getReg() != SrcReg ||
PrevCCSetter->getOperand(0).getSubReg() != SrcSubReg)
return false;
// Make sure that SrcReg survives until Compare.
MachineBasicBlock::iterator MBBI = PrevCCSetter, MBBE = Compare;
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
for (++MBBI; MBBI != MBBE; ++MBBI)
if (MBBI->modifiesRegister(SrcReg, TRI))
return false;
// See whether all uses of Compare's CC value could make do with
// the values produced by PrevCCSetter.
SmallVector<MachineOperand *, 4> AlterMasks;
if (!canRestrictCCMask(Compare, ReusableCCMask, AlterMasks, TRI))
return false;
// Alter the CC masks that canRestrictCCMask says need to be altered.
unsigned CCValues = SystemZII::getCCValues(PrevFlags);
assert((ReusableCCMask & ~CCValues) == 0 && "Invalid CCValues");
for (unsigned I = 0, E = AlterMasks.size(); I != E; I += 2) {
AlterMasks[I]->setImm(CCValues);
unsigned CCMask = AlterMasks[I + 1]->getImm();
if (CCMask & ~ReusableCCMask)
AlterMasks[I + 1]->setImm((CCMask & ReusableCCMask) |
(CCValues & ~ReusableCCMask));
}
// CC is now live after PrevCCSetter.
int CCDef = PrevCCSetter->findRegisterDefOperandIdx(SystemZ::CC, false,
true, TRI);
assert(CCDef >= 0 && "Couldn't find CC set");
PrevCCSetter->getOperand(CCDef).setIsDead(false);
// Clear any intervening kills of CC.
MBBI = PrevCCSetter;
for (++MBBI; MBBI != MBBE; ++MBBI)
MBBI->clearRegisterKills(SystemZ::CC, TRI);
return true;
}
// Try to fuse compare instruction Compare into a later branch. Return
@@ -345,6 +491,8 @@ bool SystemZLongBranch::fuseCompareAndBranch(MachineInstr *Compare) {
// that no branches need relaxation. Return the size of the function under
// this assumption.
uint64_t SystemZLongBranch::initMBBInfo() {
const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
MF->RenumberBlocks();
unsigned NumBlocks = MF->size();
@@ -365,13 +513,20 @@ uint64_t SystemZLongBranch::initMBBInfo() {
// Calculate the size of the fixed part of the block.
MachineBasicBlock::iterator MI = MBB->begin();
MachineBasicBlock::iterator End = MBB->end();
MachineInstr *PrevCCSetter = 0;
while (MI != End && !MI->isTerminator()) {
MachineInstr *Current = MI;
++MI;
if (Current->isCompare() && fuseCompareAndBranch(Current))
Current->removeFromParent();
else
Block.Size += TII->getInstSizeInBytes(Current);
if (Current->isCompare()) {
if ((PrevCCSetter && optimizeCompareZero(PrevCCSetter, Current)) ||
fuseCompareAndBranch(Current)) {
Current->removeFromParent();
continue;
}
}
if (Current->modifiesRegister(SystemZ::CC, TRI))
PrevCCSetter = Current;
Block.Size += TII->getInstSizeInBytes(Current);
}
skipNonTerminators(Position, Block);