[Hexagon] Converting complex number intrinsics and adding tests.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227995 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Colin LeMahieu 2015-02-03 18:16:28 +00:00
parent a3a588d983
commit 936986d12d
3 changed files with 439 additions and 95 deletions

View File

@ -337,6 +337,35 @@ def : T_PRR_pat <M2_mpyud_nac_hl_s1, int_hexagon_M2_mpyud_nac_hl_s1>;
def : T_PRR_pat <M2_mpyud_nac_lh_s1, int_hexagon_M2_mpyud_nac_lh_s1>;
def : T_PRR_pat <M2_mpyud_nac_ll_s1, int_hexagon_M2_mpyud_nac_ll_s1>;
// Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat
def : T_PP_pat <M2_vcmpy_s1_sat_i, int_hexagon_M2_vcmpy_s1_sat_i>;
def : T_PP_pat <M2_vcmpy_s0_sat_i, int_hexagon_M2_vcmpy_s0_sat_i>;
// Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat
def : T_PP_pat <M2_vcmpy_s1_sat_r, int_hexagon_M2_vcmpy_s1_sat_r>;
def : T_PP_pat <M2_vcmpy_s0_sat_r, int_hexagon_M2_vcmpy_s0_sat_r>;
// Vector reduce complex multiply real or imaginary:
// Rdd[+]=vrcmpy[ir](Rss,Rtt[*])
def : T_PP_pat <M2_vrcmpyi_s0, int_hexagon_M2_vrcmpyi_s0>;
def : T_PP_pat <M2_vrcmpyi_s0c, int_hexagon_M2_vrcmpyi_s0c>;
def : T_PPP_pat <M2_vrcmaci_s0, int_hexagon_M2_vrcmaci_s0>;
def : T_PPP_pat <M2_vrcmaci_s0c, int_hexagon_M2_vrcmaci_s0c>;
def : T_PP_pat <M2_vrcmpyr_s0, int_hexagon_M2_vrcmpyr_s0>;
def : T_PP_pat <M2_vrcmpyr_s0c, int_hexagon_M2_vrcmpyr_s0c>;
def : T_PPP_pat <M2_vrcmacr_s0, int_hexagon_M2_vrcmacr_s0>;
def : T_PPP_pat <M2_vrcmacr_s0c, int_hexagon_M2_vrcmacr_s0c>;
// Vector reduce halfwords
// Rdd[+]=vrmpyh(Rss,Rtt)
def : T_PP_pat <M2_vrmpy_s0, int_hexagon_M2_vrmpy_s0>;
def : T_PPP_pat <M2_vrmac_s0, int_hexagon_M2_vrmac_s0>;
// Vector complex multiply real or imaginary with accumulation
// Rxx+=vcmpy[ir](Rss,Rtt):sat
def : T_PPP_pat <M2_vcmac_s0_sat_r, int_hexagon_M2_vcmac_s0_sat_r>;
def : T_PPP_pat <M2_vcmac_s0_sat_i, int_hexagon_M2_vcmac_s0_sat_i>;
//===----------------------------------------------------------------------===//
// Add/Subtract halfword
@ -745,12 +774,38 @@ def : Pat<(int_hexagon_C2_vmux PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
def : T_RR_pat <M2_dpmpyss_s0, int_hexagon_M2_dpmpyss_s0>;
def : T_RR_pat <M2_dpmpyuu_s0, int_hexagon_M2_dpmpyuu_s0>;
// Complex multiply real or imaginary
def : T_RR_pat <M2_cmpyi_s0, int_hexagon_M2_cmpyi_s0>;
def : T_RR_pat <M2_cmpyr_s0, int_hexagon_M2_cmpyr_s0>;
// Complex multiply
def : T_RR_pat <M2_cmpys_s0, int_hexagon_M2_cmpys_s0>;
def : T_RR_pat <M2_cmpysc_s0, int_hexagon_M2_cmpysc_s0>;
def : T_RR_pat <M2_cmpys_s1, int_hexagon_M2_cmpys_s1>;
def : T_RR_pat <M2_cmpysc_s1, int_hexagon_M2_cmpysc_s1>;
// Rxx[+-]= mpy[u](Rs,Rt)
def : T_PRR_pat <M2_dpmpyss_acc_s0, int_hexagon_M2_dpmpyss_acc_s0>;
def : T_PRR_pat <M2_dpmpyss_nac_s0, int_hexagon_M2_dpmpyss_nac_s0>;
def : T_PRR_pat <M2_dpmpyuu_acc_s0, int_hexagon_M2_dpmpyuu_acc_s0>;
def : T_PRR_pat <M2_dpmpyuu_nac_s0, int_hexagon_M2_dpmpyuu_nac_s0>;
// Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat
def : T_PRR_pat <M2_cmacs_s0, int_hexagon_M2_cmacs_s0>;
def : T_PRR_pat <M2_cnacs_s0, int_hexagon_M2_cnacs_s0>;
def : T_PRR_pat <M2_cmacs_s1, int_hexagon_M2_cmacs_s1>;
def : T_PRR_pat <M2_cnacs_s1, int_hexagon_M2_cnacs_s1>;
// Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat
def : T_PRR_pat <M2_cmacsc_s0, int_hexagon_M2_cmacsc_s0>;
def : T_PRR_pat <M2_cnacsc_s0, int_hexagon_M2_cnacsc_s0>;
def : T_PRR_pat <M2_cmacsc_s1, int_hexagon_M2_cmacsc_s1>;
def : T_PRR_pat <M2_cnacsc_s1, int_hexagon_M2_cnacsc_s1>;
// Rxx+=cmpy[ir](Rs,Rt)
def : T_PRR_pat <M2_cmaci_s0, int_hexagon_M2_cmaci_s0>;
def : T_PRR_pat <M2_cmacr_s0, int_hexagon_M2_cmacr_s0>;
/********************************************************************
* CR *
*********************************************************************/
@ -807,6 +862,13 @@ def : MType_R32_pat <int_hexagon_M2_hmmpyh_rs1, M2_hmmpyh_rs1>;
def : MType_R32_pat <int_hexagon_M2_hmmpyl_rs1, M2_hmmpyl_rs1>;
def : MType_R32_pat <int_hexagon_M2_dpmpyss_rnd_s0, M2_dpmpyss_rnd_s0>;
// Complex multiply with round and pack
// Rxx32+=cmpy(Rs32,[*]Rt32:<<1]:rnd:sat
def : MType_R32_pat <int_hexagon_M2_cmpyrs_s0, M2_cmpyrs_s0>;
def : MType_R32_pat <int_hexagon_M2_cmpyrs_s1, M2_cmpyrs_s1>;
def : MType_R32_pat <int_hexagon_M2_cmpyrsc_s0, M2_cmpyrsc_s0>;
def : MType_R32_pat <int_hexagon_M2_cmpyrsc_s1, M2_cmpyrsc_s1>;
/********************************************************************
* STYPE/ALU *
*********************************************************************/
@ -1503,101 +1565,6 @@ def HEXAGON_M2_vabsdiffh:
def HEXAGON_M2_vabsdiffw:
di_MInst_didi <"vabsdiffw",int_hexagon_M2_vabsdiffw>;
/********************************************************************
* MTYPE/COMPLEX *
*********************************************************************/
// MTYPE / COMPLEX / Complex multiply.
// Rdd[-+]=cmpy(Rs, Rt:<<1]:sat
def HEXAGON_M2_cmpys_s1:
di_MInst_sisi_s1_sat <"cmpy", int_hexagon_M2_cmpys_s1>;
def HEXAGON_M2_cmpys_s0:
di_MInst_sisi_sat <"cmpy", int_hexagon_M2_cmpys_s0>;
def HEXAGON_M2_cmpysc_s1:
di_MInst_sisi_s1_sat_conj <"cmpy", int_hexagon_M2_cmpysc_s1>;
def HEXAGON_M2_cmpysc_s0:
di_MInst_sisi_sat_conj <"cmpy", int_hexagon_M2_cmpysc_s0>;
def HEXAGON_M2_cmacs_s1:
di_MInst_disisi_acc_s1_sat <"cmpy", int_hexagon_M2_cmacs_s1>;
def HEXAGON_M2_cmacs_s0:
di_MInst_disisi_acc_sat <"cmpy", int_hexagon_M2_cmacs_s0>;
def HEXAGON_M2_cmacsc_s1:
di_MInst_disisi_acc_s1_sat_conj <"cmpy", int_hexagon_M2_cmacsc_s1>;
def HEXAGON_M2_cmacsc_s0:
di_MInst_disisi_acc_sat_conj <"cmpy", int_hexagon_M2_cmacsc_s0>;
def HEXAGON_M2_cnacs_s1:
di_MInst_disisi_nac_s1_sat <"cmpy", int_hexagon_M2_cnacs_s1>;
def HEXAGON_M2_cnacs_s0:
di_MInst_disisi_nac_sat <"cmpy", int_hexagon_M2_cnacs_s0>;
def HEXAGON_M2_cnacsc_s1:
di_MInst_disisi_nac_s1_sat_conj <"cmpy", int_hexagon_M2_cnacsc_s1>;
def HEXAGON_M2_cnacsc_s0:
di_MInst_disisi_nac_sat_conj <"cmpy", int_hexagon_M2_cnacsc_s0>;
// MTYPE / COMPLEX / Complex multiply real or imaginary.
def HEXAGON_M2_cmpyr_s0:
di_MInst_sisi <"cmpyr", int_hexagon_M2_cmpyr_s0>;
def HEXAGON_M2_cmacr_s0:
di_MInst_disisi_acc <"cmpyr", int_hexagon_M2_cmacr_s0>;
def HEXAGON_M2_cmpyi_s0:
di_MInst_sisi <"cmpyi", int_hexagon_M2_cmpyi_s0>;
def HEXAGON_M2_cmaci_s0:
di_MInst_disisi_acc <"cmpyi", int_hexagon_M2_cmaci_s0>;
// MTYPE / COMPLEX / Complex multiply with round and pack.
// Rxx32+=cmpy(Rs32,[*]Rt32:<<1]:rnd:sat
def HEXAGON_M2_cmpyrs_s0:
si_MInst_sisi_rnd_sat <"cmpy", int_hexagon_M2_cmpyrs_s0>;
def HEXAGON_M2_cmpyrs_s1:
si_MInst_sisi_s1_rnd_sat <"cmpy", int_hexagon_M2_cmpyrs_s1>;
def HEXAGON_M2_cmpyrsc_s0:
si_MInst_sisi_rnd_sat_conj <"cmpy", int_hexagon_M2_cmpyrsc_s0>;
def HEXAGON_M2_cmpyrsc_s1:
si_MInst_sisi_s1_rnd_sat_conj <"cmpy", int_hexagon_M2_cmpyrsc_s1>;
//MTYPE / COMPLEX / Vector complex multiply real or imaginary.
def HEXAGON_M2_vcmpy_s0_sat_i:
di_MInst_didi_sat <"vcmpyi", int_hexagon_M2_vcmpy_s0_sat_i>;
def HEXAGON_M2_vcmpy_s1_sat_i:
di_MInst_didi_s1_sat <"vcmpyi", int_hexagon_M2_vcmpy_s1_sat_i>;
def HEXAGON_M2_vcmpy_s0_sat_r:
di_MInst_didi_sat <"vcmpyr", int_hexagon_M2_vcmpy_s0_sat_r>;
def HEXAGON_M2_vcmpy_s1_sat_r:
di_MInst_didi_s1_sat <"vcmpyr", int_hexagon_M2_vcmpy_s1_sat_r>;
def HEXAGON_M2_vcmac_s0_sat_i:
di_MInst_dididi_acc_sat <"vcmpyi", int_hexagon_M2_vcmac_s0_sat_i>;
def HEXAGON_M2_vcmac_s0_sat_r:
di_MInst_dididi_acc_sat <"vcmpyr", int_hexagon_M2_vcmac_s0_sat_r>;
//MTYPE / COMPLEX / Vector reduce complex multiply real or imaginary.
def HEXAGON_M2_vrcmpyi_s0:
di_MInst_didi <"vrcmpyi", int_hexagon_M2_vrcmpyi_s0>;
def HEXAGON_M2_vrcmpyr_s0:
di_MInst_didi <"vrcmpyr", int_hexagon_M2_vrcmpyr_s0>;
def HEXAGON_M2_vrcmpyi_s0c:
di_MInst_didi_conj <"vrcmpyi", int_hexagon_M2_vrcmpyi_s0c>;
def HEXAGON_M2_vrcmpyr_s0c:
di_MInst_didi_conj <"vrcmpyr", int_hexagon_M2_vrcmpyr_s0c>;
def HEXAGON_M2_vrcmaci_s0:
di_MInst_dididi_acc <"vrcmpyi", int_hexagon_M2_vrcmaci_s0>;
def HEXAGON_M2_vrcmacr_s0:
di_MInst_dididi_acc <"vrcmpyr", int_hexagon_M2_vrcmacr_s0>;
def HEXAGON_M2_vrcmaci_s0c:
di_MInst_dididi_acc_conj <"vrcmpyi", int_hexagon_M2_vrcmaci_s0c>;
def HEXAGON_M2_vrcmacr_s0c:
di_MInst_dididi_acc_conj <"vrcmpyr", int_hexagon_M2_vrcmacr_s0c>;
/********************************************************************
* MTYPE/MPYH *
*********************************************************************/

View File

@ -77,9 +77,25 @@ def : T_RRI_pat <M4_mpyri_addr, int_hexagon_M4_mpyri_addr>;
def : T_RRR_pat <M4_mac_up_s1_sat, int_hexagon_M4_mac_up_s1_sat>;
def : T_RRR_pat <M4_nac_up_s1_sat, int_hexagon_M4_nac_up_s1_sat>;
// Complex multiply 32x16
def : T_PR_pat <M4_cmpyi_wh, int_hexagon_M4_cmpyi_wh>;
def : T_PR_pat <M4_cmpyr_wh, int_hexagon_M4_cmpyr_wh>;
def : T_PR_pat <M4_cmpyi_whc, int_hexagon_M4_cmpyi_whc>;
def : T_PR_pat <M4_cmpyr_whc, int_hexagon_M4_cmpyr_whc>;
def : T_PP_pat<A4_andnp, int_hexagon_A4_andnp>;
def : T_PP_pat<A4_ornp, int_hexagon_A4_ornp>;
// Complex add/sub halfwords/words
def : T_PP_pat <S4_vxaddsubw, int_hexagon_S4_vxaddsubw>;
def : T_PP_pat <S4_vxsubaddw, int_hexagon_S4_vxsubaddw>;
def : T_PP_pat <S4_vxaddsubh, int_hexagon_S4_vxaddsubh>;
def : T_PP_pat <S4_vxsubaddh, int_hexagon_S4_vxsubaddh>;
def : T_PP_pat <S4_vxaddsubhr, int_hexagon_S4_vxaddsubhr>;
def : T_PP_pat <S4_vxsubaddhr, int_hexagon_S4_vxsubaddhr>;
// Extract bitfield
def : T_PP_pat <S4_extractp_rp, int_hexagon_S4_extractp_rp>;
def : T_RP_pat <S4_extract_rp, int_hexagon_S4_extract_rp>;
@ -109,6 +125,18 @@ def : T_PPR_pat <A4_vrminuh, int_hexagon_A4_vrminuh>;
def : T_PPR_pat <A4_vrminw, int_hexagon_A4_vrminw>;
def : T_PPR_pat <A4_vrminuw, int_hexagon_A4_vrminuw>;
// Rotate and reduce bytes
def : Pat <(int_hexagon_S4_vrcrotate DoubleRegs:$src1, IntRegs:$src2,
u2ImmPred:$src3),
(S4_vrcrotate DoubleRegs:$src1, IntRegs:$src2, u2ImmPred:$src3)>;
// Rotate and reduce bytes with accumulation
// Rxx+=vrcrotate(Rss,Rt,#u2)
def : Pat <(int_hexagon_S4_vrcrotate_acc DoubleRegs:$src1, DoubleRegs:$src2,
IntRegs:$src3, u2ImmPred:$src4),
(S4_vrcrotate_acc DoubleRegs:$src1, DoubleRegs:$src2,
IntRegs:$src3, u2ImmPred:$src4)>;
// Vector conditional negate
def : T_PPR_pat<S2_vrcnegh, int_hexagon_S2_vrcnegh>;

View File

@ -0,0 +1,349 @@
; RUN: llc -march=hexagon -O0 < %s | FileCheck %s
; Hexagon Programmer's Reference Manual 11.10.3 XTYPE/COMPLEX
; Complex add/sub halfwords
declare i64 @llvm.hexagon.S4.vxaddsubh(i64, i64)
define i64 @S4_vxaddsubh(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxaddsubh(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxaddsubh(r1:0, r3:2):sat
declare i64 @llvm.hexagon.S4.vxsubaddh(i64, i64)
define i64 @S4_vxsubaddh(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxsubaddh(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxsubaddh(r1:0, r3:2):sat
declare i64 @llvm.hexagon.S4.vxaddsubhr(i64, i64)
define i64 @S4_vxaddsubhr(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxaddsubhr(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxaddsubh(r1:0, r3:2):rnd:>>1:sat
declare i64 @llvm.hexagon.S4.vxsubaddhr(i64, i64)
define i64 @S4_vxsubaddhr(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxsubaddhr(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxsubaddh(r1:0, r3:2):rnd:>>1:sat
; Complex add/sub words
declare i64 @llvm.hexagon.S4.vxaddsubw(i64, i64)
define i64 @S4_vxaddsubw(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxaddsubw(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxaddsubw(r1:0, r3:2):sat
declare i64 @llvm.hexagon.S4.vxsubaddw(i64, i64)
define i64 @S4_vxsubaddw(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.S4.vxsubaddw(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vxsubaddw(r1:0, r3:2):sat
; Complex multiply
declare i64 @llvm.hexagon.M2.cmpys.s0(i32, i32)
define i64 @M2_cmpys_s0(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpys.s0(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpy(r0, r1):sat
declare i64 @llvm.hexagon.M2.cmpys.s1(i32, i32)
define i64 @M2_cmpys_s1(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpys.s1(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpy(r0, r1):<<1:sat
declare i64 @llvm.hexagon.M2.cmpysc.s0(i32, i32)
define i64 @M2_cmpysc_s0(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpysc.s0(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpy(r0, r1*):sat
declare i64 @llvm.hexagon.M2.cmpysc.s1(i32, i32)
define i64 @M2_cmpysc_s1(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpysc.s1(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpy(r0, r1*):<<1:sat
declare i64 @llvm.hexagon.M2.cmacs.s0(i64, i32, i32)
define i64 @M2_cmacs_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmacs.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpy(r2, r3):sat
declare i64 @llvm.hexagon.M2.cmacs.s1(i64, i32, i32)
define i64 @M2_cmacs_s1(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmacs.s1(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpy(r2, r3):<<1:sat
declare i64 @llvm.hexagon.M2.cnacs.s0(i64, i32, i32)
define i64 @M2_cnacs_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cnacs.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 -= cmpy(r2, r3):sat
declare i64 @llvm.hexagon.M2.cnacs.s1(i64, i32, i32)
define i64 @M2_cnacs_s1(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cnacs.s1(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 -= cmpy(r2, r3):<<1:sat
declare i64 @llvm.hexagon.M2.cmacsc.s0(i64, i32, i32)
define i64 @M2_cmacsc_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmacsc.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpy(r2, r3*):sat
declare i64 @llvm.hexagon.M2.cmacsc.s1(i64, i32, i32)
define i64 @M2_cmacsc_s1(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmacsc.s1(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpy(r2, r3*):<<1:sat
declare i64 @llvm.hexagon.M2.cnacsc.s0(i64, i32, i32)
define i64 @M2_cnacsc_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cnacsc.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 -= cmpy(r2, r3*):sat
declare i64 @llvm.hexagon.M2.cnacsc.s1(i64, i32, i32)
define i64 @M2_cnacsc_s1(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cnacsc.s1(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 -= cmpy(r2, r3*):<<1:sat
; Complex multiply real or imaginary
declare i64 @llvm.hexagon.M2.cmpyi.s0(i32, i32)
define i64 @M2_cmpyi_s0(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpyi.s0(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpyi(r0, r1)
declare i64 @llvm.hexagon.M2.cmpyr.s0(i32, i32)
define i64 @M2_cmpyr_s0(i32 %a, i32 %b) {
%z = call i64 @llvm.hexagon.M2.cmpyr.s0(i32 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = cmpyr(r0, r1)
declare i64 @llvm.hexagon.M2.cmaci.s0(i64, i32, i32)
define i64 @M2_cmaci_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmaci.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpyi(r2, r3)
declare i64 @llvm.hexagon.M2.cmacr.s0(i64, i32, i32)
define i64 @M2_cmacr_s0(i64 %a, i32 %b, i32 %c) {
%z = call i64 @llvm.hexagon.M2.cmacr.s0(i64 %a, i32 %b, i32 %c)
ret i64 %z
}
; CHECK: r1:0 += cmpyr(r2, r3)
; Complex multiply with round and pack
declare i32 @llvm.hexagon.M2.cmpyrs.s0(i32, i32)
define i32 @M2_cmpyrs_s0(i32 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M2.cmpyrs.s0(i32 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpy(r0, r1):rnd:sat
declare i32 @llvm.hexagon.M2.cmpyrs.s1(i32, i32)
define i32 @M2_cmpyrs_s1(i32 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M2.cmpyrs.s1(i32 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpy(r0, r1):<<1:rnd:sat
declare i32 @llvm.hexagon.M2.cmpyrsc.s0(i32, i32)
define i32 @M2_cmpyrsc_s0(i32 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M2.cmpyrsc.s0(i32 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpy(r0, r1*):rnd:sat
declare i32 @llvm.hexagon.M2.cmpyrsc.s1(i32, i32)
define i32 @M2_cmpyrsc_s1(i32 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M2.cmpyrsc.s1(i32 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpy(r0, r1*):<<1:rnd:sat
; Complex multiply 32x16
declare i32 @llvm.hexagon.M4.cmpyi.wh(i64, i32)
define i32 @M4_cmpyi_wh(i64 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M4.cmpyi.wh(i64 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpyiwh(r1:0, r2):<<1:rnd:sat
declare i32 @llvm.hexagon.M4.cmpyi.whc(i64, i32)
define i32 @M4_cmpyi_whc(i64 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M4.cmpyi.whc(i64 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpyiwh(r1:0, r2*):<<1:rnd:sat
declare i32 @llvm.hexagon.M4.cmpyr.wh(i64, i32)
define i32 @M4_cmpyr_wh(i64 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M4.cmpyr.wh(i64 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpyrwh(r1:0, r2):<<1:rnd:sat
declare i32 @llvm.hexagon.M4.cmpyr.whc(i64, i32)
define i32 @M4_cmpyr_whc(i64 %a, i32 %b) {
%z = call i32 @llvm.hexagon.M4.cmpyr.whc(i64 %a, i32 %b)
ret i32 %z
}
; CHECK: r0 = cmpyrwh(r1:0, r2*):<<1:rnd:sat
; Vector complex multiply real or imaginary
declare i64 @llvm.hexagon.M2.vcmpy.s0.sat.r(i64, i64)
define i64 @M2_vcmpy_s0_sat_r(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vcmpy.s0.sat.r(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vcmpyr(r1:0, r3:2):sat
declare i64 @llvm.hexagon.M2.vcmpy.s1.sat.r(i64, i64)
define i64 @M2_vcmpy_s1_sat_r(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vcmpy.s1.sat.r(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vcmpyr(r1:0, r3:2):<<1:sat
declare i64 @llvm.hexagon.M2.vcmpy.s0.sat.i(i64, i64)
define i64 @M2_vcmpy_s0_sat_i(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vcmpy.s0.sat.i(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vcmpyi(r1:0, r3:2):sat
declare i64 @llvm.hexagon.M2.vcmpy.s1.sat.i(i64, i64)
define i64 @M2_vcmpy_s1_sat_i(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vcmpy.s1.sat.i(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vcmpyi(r1:0, r3:2):<<1:sat
declare i64 @llvm.hexagon.M2.vcmac.s0.sat.r(i64, i64, i64)
define i64 @M2_vcmac_s0_sat_r(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vcmac.s0.sat.r(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vcmpyr(r3:2, r5:4):sat
declare i64 @llvm.hexagon.M2.vcmac.s0.sat.i(i64, i64, i64)
define i64 @M2_vcmac_s0_sat_i(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vcmac.s0.sat.i(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vcmpyi(r3:2, r5:4):sat
; Vector complex conjugate
declare i64 @llvm.hexagon.A2.vconj(i64)
define i64 @A2_vconj(i64 %a) {
%z = call i64 @llvm.hexagon.A2.vconj(i64 %a)
ret i64 %z
}
; CHECK: r1:0 = vconj(r1:0):sat
; Vector complex rotate
declare i64 @llvm.hexagon.S2.vcrotate(i64, i32)
define i64 @S2_vcrotate(i64 %a, i32 %b) {
%z = call i64 @llvm.hexagon.S2.vcrotate(i64 %a, i32 %b)
ret i64 %z
}
; CHECK: r1:0 = vcrotate(r1:0, r2)
; Vector reduce complex multiply real or imaginary
declare i64 @llvm.hexagon.M2.vrcmpyi.s0(i64, i64)
define i64 @M2_vrcmpyi_s0(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vrcmpyi.s0(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vrcmpyi(r1:0, r3:2)
declare i64 @llvm.hexagon.M2.vrcmpyr.s0(i64, i64)
define i64 @M2_vrcmpyr_s0(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vrcmpyr.s0(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vrcmpyr(r1:0, r3:2)
declare i64 @llvm.hexagon.M2.vrcmpyi.s0c(i64, i64)
define i64 @M2_vrcmpyi_s0c(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vrcmpyi.s0c(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vrcmpyi(r1:0, r3:2*)
declare i64 @llvm.hexagon.M2.vrcmpyr.s0c(i64, i64)
define i64 @M2_vrcmpyr_s0c(i64 %a, i64 %b) {
%z = call i64 @llvm.hexagon.M2.vrcmpyr.s0c(i64 %a, i64 %b)
ret i64 %z
}
; CHECK: r1:0 = vrcmpyr(r1:0, r3:2*)
declare i64 @llvm.hexagon.M2.vrcmaci.s0(i64, i64, i64)
define i64 @M2_vrcmaci_s0(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vrcmaci.s0(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vrcmpyi(r3:2, r5:4)
declare i64 @llvm.hexagon.M2.vrcmacr.s0(i64, i64, i64)
define i64 @M2_vrcmacr_s0(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vrcmacr.s0(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vrcmpyr(r3:2, r5:4)
declare i64 @llvm.hexagon.M2.vrcmaci.s0c(i64, i64, i64)
define i64 @M2_vrcmaci_s0c(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vrcmaci.s0c(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vrcmpyi(r3:2, r5:4*)
declare i64 @llvm.hexagon.M2.vrcmacr.s0c(i64, i64, i64)
define i64 @M2_vrcmacr_s0c(i64 %a, i64 %b, i64 %c) {
%z = call i64 @llvm.hexagon.M2.vrcmacr.s0c(i64 %a, i64 %b, i64 %c)
ret i64 %z
}
; CHECK: r1:0 += vrcmpyr(r3:2, r5:4*)
; Vector reduce complex rotate
declare i64 @llvm.hexagon.S4.vrcrotate(i64, i32, i32)
define i64 @S4_vrcrotate(i64 %a, i32 %b) {
%z = call i64 @llvm.hexagon.S4.vrcrotate(i64 %a, i32 %b, i32 0)
ret i64 %z
}
; CHECK: r1:0 = vrcrotate(r1:0, r2, #0)
declare i64 @llvm.hexagon.S4.vrcrotate.acc(i64, i64, i32, i32)
define i64 @S4_vrcrotate_acc(i64 %a, i64 %b, i32 %c) {
%z = call i64 @llvm.hexagon.S4.vrcrotate.acc(i64 %a, i64 %b, i32 %c, i32 0)
ret i64 %z
}
; CHECK: r1:0 += vrcrotate(r3:2, r4, #0)