Fix the miscompilation of MiBench/consumer-lame that was exposed by Evan's

byval work.  This miscompilation is due to the program indexing an array out
of range and us doing a transformation that broke this.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45949 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-01-14 02:09:12 +00:00
parent 6a93fc01a7
commit 941db495b8
2 changed files with 121 additions and 67 deletions

View File

@ -26,6 +26,7 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
@ -335,76 +336,113 @@ static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
return Changed;
}
/// UsersSafeToSRA - Look at all uses of the global and decide whether it is
/// safe for us to perform this transformation.
///
static bool UsersSafeToSRA(Value *V) {
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
if (CE->getOpcode() != Instruction::GetElementPtr)
return false;
// Check to see if this ConstantExpr GEP is SRA'able. In particular, we
// don't like < 3 operand CE's, and we don't like non-constant integer
// indices.
if (CE->getNumOperands() < 3 || !CE->getOperand(1)->isNullValue())
return false;
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
if (!isa<ConstantInt>(CE->getOperand(i)))
return false;
if (!UsersSafeToSRA(CE)) return false;
continue;
}
if (Instruction *I = dyn_cast<Instruction>(*UI)) {
if (isa<LoadInst>(I)) continue;
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
// Don't allow a store OF the address, only stores TO the address.
if (SI->getOperand(0) == V) return false;
continue;
}
if (isa<GetElementPtrInst>(I)) {
if (!UsersSafeToSRA(I)) return false;
// If the first two indices are constants, this can be SRA'd.
if (isa<GlobalVariable>(I->getOperand(0))) {
if (I->getNumOperands() < 3 || !isa<Constant>(I->getOperand(1)) ||
!cast<Constant>(I->getOperand(1))->isNullValue() ||
!isa<ConstantInt>(I->getOperand(2)))
return false;
continue;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I->getOperand(0))){
if (CE->getOpcode() != Instruction::GetElementPtr ||
CE->getNumOperands() < 3 || I->getNumOperands() < 2 ||
!isa<Constant>(I->getOperand(0)) ||
!cast<Constant>(I->getOperand(0))->isNullValue())
return false;
continue;
}
return false;
}
return false; // Any other instruction is not safe.
}
if (Constant *C = dyn_cast<Constant>(*UI)) {
// We might have a dead and dangling constant hanging off of here.
if (!ConstantIsDead(C))
return false;
continue;
}
// Otherwise must be some other user.
return false;
}
/// isSafeSROAElementUse - Return true if the specified instruction is a safe
/// user of a derived expression from a global that we want to SROA.
static bool isSafeSROAElementUse(Value *V) {
// We might have a dead and dangling constant hanging off of here.
if (Constant *C = dyn_cast<Constant>(V))
return ConstantIsDead(C);
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
// Loads are ok.
if (isa<LoadInst>(I)) return true;
// Stores *to* the pointer are ok.
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getOperand(0) != V;
// Otherwise, it must be a GEP.
GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
if (GEPI == 0) return false;
if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
!cast<Constant>(GEPI->getOperand(1))->isNullValue())
return false;
for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
I != E; ++I)
if (!isSafeSROAElementUse(*I))
return false;
return true;
}
/// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
/// Look at it and its uses and decide whether it is safe to SROA this global.
///
static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
// The user of the global must be a GEP Inst or a ConstantExpr GEP.
if (!isa<GetElementPtrInst>(U) &&
(!isa<ConstantExpr>(U) ||
cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
return false;
// Check to see if this ConstantExpr GEP is SRA'able. In particular, we
// don't like < 3 operand CE's, and we don't like non-constant integer
// indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
// value of C.
if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
!cast<Constant>(U->getOperand(1))->isNullValue() ||
!isa<ConstantInt>(U->getOperand(2)))
return false;
gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
++GEPI; // Skip over the pointer index.
// If this is a use of an array allocation, do a bit more checking for sanity.
if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
uint64_t NumElements = AT->getNumElements();
ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
// Check to make sure that index falls within the array. If not,
// something funny is going on, so we won't do the optimization.
//
if (Idx->getZExtValue() >= NumElements)
return false;
// We cannot scalar repl this level of the array unless any array
// sub-indices are in-range constants. In particular, consider:
// A[0][i]. We cannot know that the user isn't doing invalid things like
// allowing i to index an out-of-range subscript that accesses A[1].
//
// Scalar replacing *just* the outer index of the array is probably not
// going to be a win anyway, so just give up.
for (++GEPI; // Skip array index.
GEPI != E && (isa<ArrayType>(*GEPI) || isa<VectorType>(*GEPI));
++GEPI) {
uint64_t NumElements;
if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
NumElements = SubArrayTy->getNumElements();
else
NumElements = cast<VectorType>(*GEPI)->getNumElements();
ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
return false;
}
}
for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
if (!isSafeSROAElementUse(*I))
return false;
return true;
}
/// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
/// is safe for us to perform this transformation.
///
static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
UI != E; ++UI) {
if (!IsUserOfGlobalSafeForSRA(*UI, GV))
return false;
}
return true;
}
/// SRAGlobal - Perform scalar replacement of aggregates on the specified global
/// variable. This opens the door for other optimizations by exposing the
/// behavior of the program in a more fine-grained way. We have determined that
@ -412,7 +450,7 @@ static bool UsersSafeToSRA(Value *V) {
/// insert so that the caller can reprocess it.
static GlobalVariable *SRAGlobal(GlobalVariable *GV) {
// Make sure this global only has simple uses that we can SRA.
if (!UsersSafeToSRA(GV))
if (!GlobalUsersSafeToSRA(GV))
return 0;
assert(GV->hasInternalLinkage() && !GV->isConstant());

View File

@ -0,0 +1,16 @@
; RUN: llvm-as < %s | opt -globalopt | llvm-dis | grep {16 x .31 x double.. zeroinitializer}
; The 'X' indices could be larger than 31. Do not SROA the outer indices of this array.
@mm = internal global [16 x [31 x double]] zeroinitializer, align 32
define void @test(i32 %X) {
%P = getelementptr [16 x [31 x double]]* @mm, i32 0, i32 0, i32 %X
store double 1.0, double* %P
ret void
}
define double @get(i32 %X) {
%P = getelementptr [16 x [31 x double]]* @mm, i32 0, i32 0, i32 %X
%V = load double* %P
ret double %V
}