Added alias analysis.

Fixed many many bugs.
This now works on almost all Singlesource , and most of MultiSource.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20780 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Tanya Lattner 2005-03-23 01:47:20 +00:00
parent 2f72f9462b
commit 9532ab9839
6 changed files with 726 additions and 195 deletions

View File

@ -165,12 +165,27 @@ bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle) {
}
bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches) {
bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches, std::map<const MachineInstr*, unsigned> &indVar) {
int stageNum = (schedule.rbegin()->first)/ II;
//Our schedule is allowed to have negative numbers, so lets calculate this offset
int offset = schedule.begin()->first;
if(offset > 0)
offset = 0;
DEBUG(std::cerr << "Offset: " << offset << "\n");
//Not sure what happens in this case, but assert if offset is > II
//assert(offset > -II && "Offset can not be more then II");
std::vector<std::pair<MSchedGraphNode*, int> > tempKernel;
int stageNum = ((schedule.rbegin()->first-offset)+1)/ II;
int maxSN = 0;
DEBUG(std::cerr << "Number of Stages: " << stageNum << "\n");
for(int index = 0; index < II; ++index) {
for(int index = offset; index < (II+offset); ++index) {
int count = 0;
for(int i = index; i <= (schedule.rbegin()->first); i+=II) {
if(schedule.count(i)) {
@ -179,26 +194,61 @@ bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches
//Check if its a branch
if((*I)->isBranch()) {
assert(count == 0 && "Branch can not be from a previous iteration");
kernel.push_back(std::make_pair(*I, count));
tempKernel.push_back(std::make_pair(*I, count));
}
else
else {
//FIXME: Check if the instructions in the earlier stage conflict
kernel.push_back(std::make_pair(*I, count));
tempKernel.push_back(std::make_pair(*I, count));
maxSN = std::max(maxSN, count);
}
}
}
++count;
}
}
//Push on branches. Branch vector is in order of last branch to first.
for(std::vector<MSchedGraphNode*>::reverse_iterator B = branches.rbegin() , BE = branches.rend(); B != BE; ++B) {
kernel.push_back(std::make_pair(*B, 0));
//Add in induction var code
for(std::vector<std::pair<MSchedGraphNode*, int> >::iterator I = tempKernel.begin(), IE = tempKernel.end();
I != IE; ++I) {
//Add indVar instructions before this one for the current iteration
if(I->second == 0) {
std::map<unsigned, MachineInstr*> tmpMap;
//Loop over induction variable instructions in the map that come before this instr
for(std::map<const MachineInstr*, unsigned>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
if(N->second < I->first->getIndex())
tmpMap[N->second] = (MachineInstr*) N->first;
}
//Add to kernel, and delete from indVar
for(std::map<unsigned, MachineInstr*>::iterator N = tmpMap.begin(), NE = tmpMap.end(); N != NE; ++N) {
kernel.push_back(std::make_pair(N->second, 0));
indVar.erase(N->second);
}
}
kernel.push_back(std::make_pair((MachineInstr*) I->first->getInst(), I->second));
}
if(stageNum > 0)
maxStage = stageNum;
else
maxStage = 0;
std::map<unsigned, MachineInstr*> tmpMap;
//Add remaining invar instructions
for(std::map<const MachineInstr*, unsigned>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
tmpMap[N->second] = (MachineInstr*) N->first;
}
//Add to kernel, and delete from indVar
for(std::map<unsigned, MachineInstr*>::iterator N = tmpMap.begin(), NE = tmpMap.end(); N != NE; ++N) {
kernel.push_back(std::make_pair(N->second, 0));
indVar.erase(N->second);
}
maxStage = maxSN;
return true;
}
@ -214,7 +264,7 @@ void MSSchedule::print(std::ostream &os) const {
}
os << "Kernel:\n";
for(std::vector<std::pair<MSchedGraphNode*, int> >::const_iterator I = kernel.begin(),
for(std::vector<std::pair<MachineInstr*, int> >::const_iterator I = kernel.begin(),
E = kernel.end(); I != E; ++I)
os << "Node: " << *(I->first) << " Stage: " << I->second << "\n";
}

View File

@ -16,6 +16,7 @@
#include "MSchedGraph.h"
#include <vector>
#include <set>
namespace llvm {
@ -30,7 +31,7 @@ namespace llvm {
bool resourcesFree(MSchedGraphNode*, int);
//Resulting kernel
std::vector<std::pair<MSchedGraphNode*, int> > kernel;
std::vector<std::pair<MachineInstr*, int> > kernel;
//Max stage count
int maxStage;
@ -44,8 +45,8 @@ namespace llvm {
bool insert(MSchedGraphNode *node, int cycle);
int getStartCycle(MSchedGraphNode *node);
void clear() { schedule.clear(); resourceNumPerCycle.clear(); kernel.clear(); }
std::vector<std::pair<MSchedGraphNode*, int> >* getKernel() { return &kernel; }
bool constructKernel(int II, std::vector<MSchedGraphNode*> &branches);
std::vector<std::pair<MachineInstr*, int> >* getKernel() { return &kernel; }
bool constructKernel(int II, std::vector<MSchedGraphNode*> &branches, std::map<const MachineInstr*, unsigned> &indVar);
int getMaxStage() { return maxStage; }
@ -56,8 +57,8 @@ namespace llvm {
schedule_iterator end() { return schedule.end(); };
void print(std::ostream &os) const;
typedef std::vector<std::pair<MSchedGraphNode*, int> >::iterator kernel_iterator;
typedef std::vector<std::pair<MSchedGraphNode*, int> >::const_iterator kernel_const_iterator;
typedef std::vector<std::pair<MachineInstr*, int> >::iterator kernel_iterator;
typedef std::vector<std::pair<MachineInstr*, int> >::const_iterator kernel_const_iterator;
kernel_iterator kernel_begin() { return kernel.begin(); }
kernel_iterator kernel_end() { return kernel.end(); }

View File

@ -7,8 +7,11 @@
//
//===----------------------------------------------------------------------===//
//
// A graph class for dependencies
//
// A graph class for dependencies. This graph only contains true, anti, and
// output data dependencies for a given MachineBasicBlock. Dependencies
// across iterations are also computed. Unless data dependence analysis
// is provided, a conservative approach of adding dependencies between all
// loads and stores is taken.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ModuloSched"
@ -22,8 +25,11 @@
#include "llvm/Support/Debug.h"
#include <cstdlib>
#include <algorithm>
#include <set>
using namespace llvm;
//MSchedGraphNode constructor
MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
MSchedGraph *graph, unsigned idx,
unsigned late, bool isBranch)
@ -33,6 +39,7 @@ MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
graph->addNode(inst, this);
}
//MSchedGraphNode copy constructor
MSchedGraphNode::MSchedGraphNode(const MSchedGraphNode &N)
: Predecessors(N.Predecessors), Successors(N.Successors) {
@ -44,10 +51,13 @@ MSchedGraphNode::MSchedGraphNode(const MSchedGraphNode &N)
}
//Print the node (instruction and latency)
void MSchedGraphNode::print(std::ostream &os) const {
os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n";
}
//Get the edge from a predecessor to this node
MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
@ -60,6 +70,7 @@ MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
abort();
}
//Get the iteration difference for the edge from this node to its successor
unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
for(std::vector<MSchedGraphEdge>::iterator I = Successors.begin(), E = Successors.end();
I != E; ++I) {
@ -69,7 +80,7 @@ unsigned MSchedGraphNode::getIteDiff(MSchedGraphNode *succ) {
return 0;
}
//Get the index into the vector of edges for the edge from pred to this node
unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
@ -83,6 +94,8 @@ unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
assert(0 && "Should have found edge between this node and its predecessor!");
abort();
}
//Determine if succ is a successor of this node
bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
if(*I == succ)
@ -90,7 +103,7 @@ bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
return false;
}
//Dtermine if pred is a predecessor of this node
bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
if(std::find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end())
return true;
@ -98,7 +111,7 @@ bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
return false;
}
//Add a node to the graph
void MSchedGraph::addNode(const MachineInstr *MI,
MSchedGraphNode *node) {
@ -109,6 +122,7 @@ void MSchedGraph::addNode(const MachineInstr *MI,
GraphMap[MI] = node;
}
//Delete a node to the graph
void MSchedGraph::deleteNode(MSchedGraphNode *node) {
//Delete the edge to this node from all predecessors
@ -123,7 +137,10 @@ void MSchedGraph::deleteNode(MSchedGraphNode *node) {
}
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ)
//Create a graph for a machine block. The ignoreInstrs map is so that we ignore instructions
//associated to the index variable since this is a special case in Modulo Scheduling.
//We only want to deal with the body of the loop.
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ, AliasAnalysis &AA, TargetData &TD, std::map<const MachineInstr*, unsigned> &ignoreInstrs)
: BB(bb), Target(targ) {
//Make sure BB is not null,
@ -132,9 +149,13 @@ MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ)
//DEBUG(std::cerr << "Constructing graph for " << bb << "\n");
//Create nodes and edges for this BB
buildNodesAndEdges();
buildNodesAndEdges(AA, TD, ignoreInstrs);
//Experimental!
//addBranchEdges();
}
//Copies the graph and keeps a map from old to new nodes
MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes)
: BB(G.BB), Target(G.Target) {
@ -169,13 +190,86 @@ MSchedGraph::MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSched
}
}
//Deconstructor, deletes all nodes in the graph
MSchedGraph::~MSchedGraph () {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I)
delete I->second;
}
void MSchedGraph::buildNodesAndEdges() {
//Experimental code to add edges from the branch to all nodes dependent upon it.
void hasPath(MSchedGraphNode *node, std::set<MSchedGraphNode*> &visited,
std::set<MSchedGraphNode*> &branches, MSchedGraphNode *startNode,
std::set<std::pair<MSchedGraphNode*,MSchedGraphNode*> > &newEdges ) {
visited.insert(node);
DEBUG(std::cerr << "Visiting: " << *node << "\n");
//Loop over successors
for(unsigned i = 0; i < node->succ_size(); ++i) {
MSchedGraphEdge *edge = node->getSuccessor(i);
MSchedGraphNode *dest = edge->getDest();
if(branches.count(dest))
newEdges.insert(std::make_pair(dest, startNode));
//only visit if we have not already
else if(!visited.count(dest)) {
if(edge->getIteDiff() == 0)
hasPath(dest, visited, branches, startNode, newEdges);}
}
}
//Experimental code to add edges from the branch to all nodes dependent upon it.
void MSchedGraph::addBranchEdges() {
std::set<MSchedGraphNode*> branches;
std::set<MSchedGraphNode*> nodes;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
if(I->second->isBranch())
if(I->second->hasPredecessors())
branches.insert(I->second);
}
//See if there is a path first instruction to the branches, if so, add an
//iteration dependence between that node and the branch
std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> > newEdges;
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I) {
std::set<MSchedGraphNode*> visited;
hasPath((I->second), visited, branches, (I->second), newEdges);
}
//Spit out all edges we are going to add
unsigned min = GraphMap.size();
if(newEdges.size() == 1) {
((newEdges.begin())->first)->addOutEdge(((newEdges.begin())->second),
MSchedGraphEdge::BranchDep,
MSchedGraphEdge::NonDataDep, 1);
}
else {
unsigned count = 0;
MSchedGraphNode *start;
MSchedGraphNode *end;
for(std::set<std::pair<MSchedGraphNode*, MSchedGraphNode*> >::iterator I = newEdges.begin(), E = newEdges.end(); I != E; ++I) {
DEBUG(std::cerr << "Branch Edge from: " << *(I->first) << " to " << *(I->second) << "\n");
// if(I->second->getIndex() <= min) {
start = I->first;
end = I->second;
//min = I->second->getIndex();
//}
start->addOutEdge(end,
MSchedGraphEdge::BranchDep,
MSchedGraphEdge::NonDataDep, 1);
}
}
}
//Add edges between the nodes
void MSchedGraph::buildNodesAndEdges(AliasAnalysis &AA, TargetData &TD, std::map<const MachineInstr*, unsigned> &ignoreInstrs) {
//Get Machine target information for calculating latency
const TargetInstrInfo *MTI = Target.getInstrInfo();
@ -190,6 +284,13 @@ void MSchedGraph::buildNodesAndEdges() {
//Loop over instructions in MBB and add nodes and edges
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
//Ignore indvar instructions
if(ignoreInstrs.count(MI)) {
++index;
continue;
}
//Get each instruction of machine basic block, get the delay
//using the op code, create a new node for it, and add to the
//graph.
@ -262,7 +363,6 @@ void MSchedGraph::buildNodesAndEdges() {
DEBUG(std::cerr << "Read Operation in a PHI node\n");
continue;
}
if (const Value* srcI = mOp.getVRegValue()) {
@ -274,7 +374,7 @@ void MSchedGraph::buildNodesAndEdges() {
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef());
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs);
//Add to value map
V->second.push_back(std::make_pair(i,node));
@ -295,14 +395,16 @@ void MSchedGraph::buildNodesAndEdges() {
if(const PHINode *PN = dyn_cast<PHINode>(I)) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(PN);
for (unsigned j = 0; j < tempMvec.size(); j++) {
DEBUG(std::cerr << "Inserting phi instr into map: " << *tempMvec[j] << "\n");
phiInstrs.push_back((MachineInstr*) tempMvec[j]);
if(!ignoreInstrs.count(tempMvec[j])) {
DEBUG(std::cerr << "Inserting phi instr into map: " << *tempMvec[j] << "\n");
phiInstrs.push_back((MachineInstr*) tempMvec[j]);
}
}
}
}
addMemEdges(memInstructions);
addMemEdges(memInstructions, AA, TD);
addMachRegEdges(regNumtoNodeMap);
//Finally deal with PHI Nodes and Value*
@ -324,28 +426,30 @@ void MSchedGraph::buildNodesAndEdges() {
//Get Operand
const MachineOperand &mOp = (*I)->getOperand(i);
if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
//find the value in the map
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), 1);
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), phiInstrs, 1);
}
}
}
}
}
}
}
}
//Add dependencies for Value*s
void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphNode *destNode, bool nodeIsUse,
bool nodeIsDef, int diff) {
bool nodeIsDef, std::vector<const MachineInstr*> &phiInstrs, int diff) {
for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
E = NodesInMap.end(); I != E; ++I) {
@ -354,26 +458,34 @@ void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphNode *srcNode = I->second;
MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
if(diff > 0)
if(std::find(phiInstrs.begin(), phiInstrs.end(), srcNode->getInst()) == phiInstrs.end())
continue;
//Node is a Def, so add output dep.
if(nodeIsDef) {
if(mOp.isUse()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=anti)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::AntiDep, diff);
}
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=output)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::OutputDep, diff);
}
}
if(nodeIsUse) {
if(mOp.isDef())
if(mOp.isDef()) {
DEBUG(std::cerr << "Edge from " << *srcNode << " to " << *destNode << " (itediff=" << diff << ", type=true)\n");
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::TrueDep, diff);
}
}
}
}
//Add dependencies for machine registers across iterations
void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
//Loop over all machine registers in the map, and add dependencies
//between the instructions that use it
@ -469,7 +581,9 @@ void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >&
}
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst) {
//Add edges between all loads and stores
//Can be less strict with alias analysis and data dependence analysis.
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst, AliasAnalysis &AA, TargetData &TD) {
//Get Target machine instruction info
const TargetInstrInfo *TMI = Target.getInstrInfo();
@ -478,51 +592,132 @@ void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst) {
//Knowing that they are in execution, add true, anti, and output dependencies
for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
MachineInstr *srcInst = (MachineInstr*) memInst[srcIndex]->getInst();
//Get the machine opCode to determine type of memory instruction
MachineOpCode srcNodeOpCode = memInst[srcIndex]->getInst()->getOpcode();
MachineOpCode srcNodeOpCode = srcInst->getOpcode();
//All instructions after this one in execution order have an iteration delay of 0
for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) {
//source is a Load, so add anti-dependencies (store after load)
if(TMI->isLoad(srcNodeOpCode))
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep);
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
//Add Anti dependencies (store after load)
//Source is a Load
if(TMI->isLoad(srcNodeOpCode)) {
//Destination is a store
if(TMI->isStore(destInst->getOpcode())) {
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
assert((mOp.isUse() && (mOp.getType() == MachineOperand::MO_VirtualRegister)) && "Assumed first operand was a use and a value*\n");
//Get the value* for the store
const MachineOperand &mOp2 = destInst->getOperand(0);
assert(mOp2.getType() == MachineOperand::MO_VirtualRegister && "Assumed first operand was a value*\n");
//Only add the edge if we can't verify that they do not alias
if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {
//Add edge from load to store
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep);
}
}
}
//If source is a store, add output and true dependencies
if(TMI->isStore(srcNodeOpCode)) {
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep);
//Get the Value* that we are reading from the store (src), always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Assumed first operand was a use and a value*\n");
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp2 = srcInst->getOperand(0);
assert((mOp2.isUse() && (mOp2.getType() == MachineOperand::MO_VirtualRegister)) && "Assumed first operand was a use and a value*\n");
//Only add the edge if we can't verify that they do not alias
if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep);
}
}
}
//All instructions before the src in execution order have an iteration delay of 1
for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) {
MachineInstr *destInst = (MachineInstr*) memInst[destIndex]->getInst();
//source is a Load, so add anti-dependencies (store after load)
if(TMI->isLoad(srcNodeOpCode))
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep, 1);
if(TMI->isStore(srcNodeOpCode)) {
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep, 1);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep, 1);
}
if(TMI->isLoad(srcNodeOpCode)) {
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
assert((mOp.isUse() && (mOp.getType() == MachineOperand::MO_VirtualRegister)) && "Assumed first operand was a use and a value*\n");
//Get the value* for the store
const MachineOperand &mOp2 = destInst->getOperand(0);
assert(mOp2.getType() == MachineOperand::MO_VirtualRegister && "Assumed first operand was a value*\n");
//Only add the edge if we can't verify that they do not alias
if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep, 1);
}
}
if(TMI->isStore(srcNodeOpCode)) {
//Get the Value* that we are reading from the store (src), always the first op
const MachineOperand &mOp = srcInst->getOperand(0);
assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Assumed first operand was a use and a value*\n");
//Get the Value* that we are reading from the load, always the first op
const MachineOperand &mOp2 = srcInst->getOperand(0);
assert((mOp2.isUse() && (mOp2.getType() == MachineOperand::MO_VirtualRegister)) && "Assumed first operand was a use and a value*\n");
//Only add the edge if we can't verify that they do not alias
if(AA.alias(mOp2.getVRegValue(),
(unsigned)TD.getTypeSize(mOp2.getVRegValue()->getType()),
mOp.getVRegValue(),
(unsigned)TD.getTypeSize(mOp.getVRegValue()->getType()))
!= AliasAnalysis::NoAlias) {
if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep, 1);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep, 1);
}
}
}
}

View File

@ -7,37 +7,45 @@
//
//===----------------------------------------------------------------------===//
//
// A graph class for dependencies
//
// A graph class for dependencies. This graph only contains true, anti, and
// output data dependencies for a given MachineBasicBlock. Dependencies
// across iterations are also computed. Unless data dependence analysis
// is provided, a conservative approach of adding dependencies between all
// loads and stores is taken.
//===----------------------------------------------------------------------===//
#ifndef LLVM_MSCHEDGRAPH_H
#define LLVM_MSCHEDGRAPH_H
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/iterator"
#include <vector>
namespace llvm {
class MSchedGraph;
class MSchedGraphNode;
template<class IteratorType, class NodeType>
class MSchedGraphNodeIterator;
//MSchedGraphEdge encapsulates the data dependence between nodes. It
//identifies the dependence type, on what, and the iteration
//difference
struct MSchedGraphEdge {
enum DataDepOrderType {
TrueDep, AntiDep, OutputDep, NonDataDep
};
enum MSchedGraphEdgeType {
MemoryDep, ValueDep, MachineRegister
MemoryDep, ValueDep, MachineRegister, BranchDep
};
//Get or set edge data
MSchedGraphNode *getDest() const { return dest; }
unsigned getIteDiff() { return iteDiff; }
unsigned getDepOrderType() { return depOrderType; }
@ -55,6 +63,9 @@ namespace llvm {
unsigned iteDiff;
};
//MSchedGraphNode represents a machine instruction and its
//corresponding latency. Each node also contains a list of its
//predecessors and sucessors.
class MSchedGraphNode {
const MachineInstr* Inst; //Machine Instruction
@ -63,9 +74,8 @@ namespace llvm {
unsigned latency; //Latency of Instruction
bool isBranchInstr; //Is this node the branch instr or not
std::vector<MSchedGraphNode*> Predecessors; //Predecessor Nodes
std::vector<MSchedGraphEdge> Successors;
std::vector<MSchedGraphEdge> Successors; //Successor edges
public:
MSchedGraphNode(const MachineInstr *inst, MSchedGraph *graph,
@ -73,7 +83,7 @@ namespace llvm {
MSchedGraphNode(const MSchedGraphNode &N);
//Iterators
//Iterators - Predecessor and Succussor
typedef std::vector<MSchedGraphNode*>::iterator pred_iterator;
pred_iterator pred_begin() { return Predecessors.begin(); }
pred_iterator pred_end() { return Predecessors.end(); }
@ -83,7 +93,6 @@ namespace llvm {
pred_const_iterator pred_begin() const { return Predecessors.begin(); }
pred_const_iterator pred_end() const { return Predecessors.end(); }
// Successor iterators.
typedef MSchedGraphNodeIterator<std::vector<MSchedGraphEdge>::const_iterator,
const MSchedGraphNode> succ_const_iterator;
succ_const_iterator succ_begin() const;
@ -93,39 +102,39 @@ namespace llvm {
MSchedGraphNode> succ_iterator;
succ_iterator succ_begin();
succ_iterator succ_end();
unsigned succ_size() { return Successors.size(); }
//Get or set predecessor nodes, or successor edges
void setPredecessor(unsigned index, MSchedGraphNode *dest) {
Predecessors[index] = dest;
}
MSchedGraphNode* getPredecessor(unsigned index) {
return Predecessors[index];
}
MSchedGraphEdge* getSuccessor(unsigned index) {
return &Successors[index];
}
void deleteSuccessor(MSchedGraphNode *node) {
for (unsigned i = 0; i != Successors.size(); ++i)
if (Successors[i].getDest() == node) {
Successors.erase(Successors.begin()+i);
node->Predecessors.erase(std::find(node->Predecessors.begin(),
node->Predecessors.end(), this));
--i;
--i; //Decrease index var since we deleted a node
}
}
void addOutEdge(MSchedGraphNode *destination,
MSchedGraphEdge::MSchedGraphEdgeType type,
unsigned deptype, unsigned diff=0) {
Successors.push_back(MSchedGraphEdge(destination, type, deptype,diff));
destination->Predecessors.push_back(this);
}
//General methods to get and set data for the node
const MachineInstr* getInst() { return Inst; }
MSchedGraph* getParent() { return Parent; }
bool hasPredecessors() { return (Predecessors.size() > 0); }
@ -139,11 +148,13 @@ namespace llvm {
bool isSuccessor(MSchedGraphNode *);
bool isPredecessor(MSchedGraphNode *);
bool isBranch() { return isBranchInstr; }
//Debug support
void print(std::ostream &os) const;
void setParent(MSchedGraph *p) { Parent = p; }
};
//Node iterator for graph generation
template<class IteratorType, class NodeType>
class MSchedGraphNodeIterator : public forward_iterator<NodeType*, ptrdiff_t> {
IteratorType I; // std::vector<MSchedGraphEdge>::iterator or const_iterator
@ -219,6 +230,7 @@ namespace llvm {
//Graph class to represent dependence graph
class MSchedGraph {
const MachineBasicBlock *BB; //Machine basic block
@ -229,20 +241,26 @@ namespace llvm {
//Add Nodes and Edges to this graph for our BB
typedef std::pair<int, MSchedGraphNode*> OpIndexNodePair;
void buildNodesAndEdges();
void buildNodesAndEdges(AliasAnalysis &AA, TargetData &TD, std::map<const MachineInstr*, unsigned> &ignoreInstrs);
void addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphNode *node,
bool nodeIsUse, bool nodeIsDef, int diff=0);
bool nodeIsUse, bool nodeIsDef, std::vector<const MachineInstr*> &phiInstrs, int diff=0);
void addMachRegEdges(std::map<int,
std::vector<OpIndexNodePair> >& regNumtoNodeMap);
void addMemEdges(const std::vector<MSchedGraphNode*>& memInst);
void addMemEdges(const std::vector<MSchedGraphNode*>& memInst, AliasAnalysis &AA, TargetData &TD);
void addBranchEdges();
public:
MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ);
MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ, AliasAnalysis &AA, TargetData &TD,
std::map<const MachineInstr*, unsigned> &ignoreInstrs);
//Copy constructor with maps to link old nodes to new nodes
MSchedGraph(const MSchedGraph &G, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
//Deconstructor!
~MSchedGraph();
//Add Nodes to the Graph
//Add or delete nodes from the Graph
void addNode(const MachineInstr* MI, MSchedGraphNode *node);
void deleteNode(MSchedGraphNode *node);
@ -256,21 +274,23 @@ namespace llvm {
unsigned size() { return GraphMap.size(); }
reverse_iterator rbegin() { return GraphMap.rbegin(); }
reverse_iterator rend() { return GraphMap.rend(); }
//Get Target or original machine basic block
const TargetMachine* getTarget() { return &Target; }
const MachineBasicBlock* getBB() { return BB; }
};
static MSchedGraphNode& getSecond(std::pair<const MachineInstr* const,
MSchedGraphNode*> &Pair) {
return *Pair.second;
}
// Provide specializations of GraphTraits to be able to use graph
// iterators on the scheduling graph!
//
// iterators on the scheduling graph
static MSchedGraphNode& getSecond(std::pair<const MachineInstr* const,
MSchedGraphNode*> &Pair) {
return *Pair.second;
}
template <> struct GraphTraits<MSchedGraph*> {
typedef MSchedGraphNode NodeType;
typedef MSchedGraphNode::succ_iterator ChildIteratorType;
@ -361,8 +381,6 @@ namespace llvm {
return map_iterator(((MSchedGraph*)G)->end(), DerefFun(getSecond));
}
};
}
#endif

View File

@ -15,6 +15,7 @@
#define DEBUG_TYPE "ModuloSched"
#include "ModuloScheduling.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFunction.h"
@ -131,6 +132,9 @@ namespace llvm {
};
}
#include <unistd.h>
/// ModuloScheduling::runOnFunction - main transformation entry point
/// The Swing Modulo Schedule algorithm has three basic steps:
/// 1) Computation and Analysis of the dependence graph
@ -138,7 +142,8 @@ namespace llvm {
/// 3) Scheduling
///
bool ModuloSchedulingPass::runOnFunction(Function &F) {
alarm(300);
bool Changed = false;
int numMS = 0;
@ -147,7 +152,9 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//Get MachineFunction
MachineFunction &MF = MachineFunction::get(&F);
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData &TD = getAnalysis<TargetData>();
//Worklist
std::vector<MachineBasicBlock*> Worklist;
@ -169,6 +176,9 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//Print out BB for debugging
DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
//Print out LLVM BB
DEBUG(std::cerr << "ModuloScheduling LLVMBB: \n"; (*BI)->getBasicBlock()->print(std::cerr));
//Catch the odd case where we only have TmpInstructions and no real Value*s
if(!CreateDefMap(*BI)) {
//Clear out our maps for the next basic block that is processed
@ -181,7 +191,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
continue;
}
MSchedGraph *MSG = new MSchedGraph(*BI, target);
MSchedGraph *MSG = new MSchedGraph(*BI, target, AA, TD, indVarInstrs[*BI]);
//Write Graph out to file
DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
@ -242,7 +252,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
});
//Finally schedule nodes
bool haveSched = computeSchedule();
bool haveSched = computeSchedule(*BI);
//Print out final schedule
DEBUG(schedule.print(std::cerr));
@ -278,7 +288,8 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
//delete(llvmBB);
//delete(*BI);
}
alarm(0);
return Changed;
}
@ -345,7 +356,10 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
//Get Target machine instruction info
const TargetInstrInfo *TMI = target.getInstrInfo();
//Check each instruction and look for calls
//Check each instruction and look for calls, keep map to get index later
std::map<const MachineInstr*, unsigned> indexMap;
unsigned count = 0;
for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
//Get opcode to check instruction type
MachineOpCode OC = I->getOpcode();
@ -360,7 +374,111 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
|| OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
|| OC == V9::MOVFNEr || OC == V9::MOVFNEi)
return false;
indexMap[I] = count;
if(TMI->isNop(OC))
continue;
++count;
}
//Apply a simple pattern match to make sure this loop can be modulo scheduled
//This means only loops with a branch associated to the iteration count
//Get the branch
BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) BI->getBasicBlock())->getTerminator());
//Get the condition for the branch (we already checked if it was conditional)
Value *cond = b->getCondition();
DEBUG(std::cerr << "Condition: " << *cond << "\n");
//List of instructions associated with induction variable
std::set<Instruction*> indVar;
std::vector<Instruction*> stack;
BasicBlock *BB = (BasicBlock*) BI->getBasicBlock();
//Add branch
indVar.insert(b);
if(Instruction *I = dyn_cast<Instruction>(cond))
if(I->getParent() == BB) {
if (!assocIndVar(I, indVar, stack, BB))
return false;
}
else
return false;
else
return false;
//The indVar set must be >= 3 instructions for this loop to match (FIX ME!)
if(indVar.size() < 3 )
return false;
//Dump out instructions associate with indvar for debug reasons
DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
std::cerr << **N << "\n";
});
//Convert list of LLVM Instructions to list of Machine instructions
std::map<const MachineInstr*, unsigned> mIndVar;
for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); N != NE; ++N) {
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
for (unsigned j = 0; j < tempMvec.size(); j++) {
MachineOpCode OC = (tempMvec[j])->getOpcode();
if(TMI->isNop(OC))
continue;
if(!indexMap.count(tempMvec[j]))
continue;
mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
}
}
//Must have some guts to the loop body
if(mIndVar.size() >= (BI->size()-2))
return false;
//Put into a map for future access
indVarInstrs[BI] = mIndVar;
return true;
}
bool ModuloSchedulingPass::assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
std::vector<Instruction*> &stack, BasicBlock *BB) {
stack.push_back(I);
//If this is a phi node, check if its the canonical indvar
if(PHINode *PN = dyn_cast<PHINode>(I)) {
if (Instruction *Inc =
dyn_cast<Instruction>(PN->getIncomingValueForBlock(BB)))
if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
if (CI->equalsInt(1)) {
//We have found the indvar, so add the stack, and inc instruction to the set
indVar.insert(stack.begin(), stack.end());
indVar.insert(Inc);
stack.pop_back();
return true;
}
return false;
}
else {
//Loop over each of the instructions operands, check if they are an instruction and in this BB
for(unsigned i = 0; i < I->getNumOperands(); ++i) {
if(Instruction *N = dyn_cast<Instruction>(I->getOperand(i))) {
if(N->getParent() == BB)
if(!assocIndVar(N, indVar, stack, BB))
return false;
}
}
}
stack.pop_back();
return true;
}
@ -444,7 +562,7 @@ int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
findAllCircuits(graph, MII);
int RecMII = 0;
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
RecMII = std::max(RecMII, I->first);
}
@ -508,6 +626,8 @@ bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode
bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
return findEdge;
}
@ -785,14 +905,21 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
int totalDelay = 0;
int totalDistance = 0;
MSchedGraphNode *lastN = 0;
MSchedGraphNode *start = 0;
MSchedGraphNode *end = 0;
//Loop over recurrence, get delay and distance
for(std::vector<MSchedGraphNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
totalDelay += (*N)->getLatency();
if(lastN) {
totalDistance += (*N)->getInEdge(lastN).getIteDiff();
}
int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
totalDistance += iteDiff;
if(iteDiff > 0) {
start = lastN;
end = *N;
}
}
//Get the original node
lastN = *N;
recc.push_back(newNodes[*N]);
@ -807,10 +934,17 @@ bool ModuloSchedulingPass::circuit(MSchedGraphNode *v, std::vector<MSchedGraphNo
f = true;
CircCount++;
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
if(start && end) {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
}
else {
//Insert reccurrence into the list
DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
}
//Adjust II until we get close to the inequality delay - II*distance <= 0
int RecMII = II; //Starting value
int value = totalDelay-(RecMII * totalDistance);
@ -903,7 +1037,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
//Ignore self loops
if(nextSCC.size() > 1) {
//Get least vertex in Vk
if(!s) {
s = nextSCC[0];
@ -1053,16 +1187,52 @@ void ModuloSchedulingPass::searchPath(MSchedGraphNode *node,
if(PO->count(*S)) {
nodesToAdd.insert(*S);
}
searchPath(*S, path, nodesToAdd);
//terminate
else
searchPath(*S, path, nodesToAdd);
}
}
//Pop Node off the path
path.pop_back();
}
void ModuloSchedulingPass::pathToRecc(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &poSet,
std::set<MSchedGraphNode*> &lastNodes) {
//Push node onto the path
path.push_back(node);
DEBUG(std::cerr << "Current node: " << *node << "\n");
//Loop over all successors and see if there is a path from this node to
//a recurrence in the partial order, if so.. add all nodes to be added to recc
for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
++S) {
DEBUG(std::cerr << "Succ:" << **S << "\n");
//Check if we should ignore this edge first
if(ignoreEdge(node,*S))
continue;
if(poSet.count(*S)) {
DEBUG(std::cerr << "Found path to recc from no pred\n");
//Loop over path, if it exists in lastNodes, then add to poset, and remove from lastNodes
for(std::vector<MSchedGraphNode*>::iterator I = path.begin(), IE = path.end(); I != IE; ++I) {
if(lastNodes.count(*I)) {
DEBUG(std::cerr << "Inserting node into recc: " << **I << "\n");
poSet.insert(*I);
lastNodes.erase(*I);
}
}
}
else
pathToRecc(*S, path, poSet, lastNodes);
}
//Pop Node off the path
path.pop_back();
}
void ModuloSchedulingPass::computePartialOrder() {
@ -1095,7 +1265,7 @@ void ModuloSchedulingPass::computePartialOrder() {
//Check if its a branch, and remove to handle special
if(!found) {
if((*N)->isBranch()) {
if((*N)->isBranch() && !(*N)->hasPredecessors()) {
branches.push_back(*N);
}
else
@ -1112,8 +1282,8 @@ void ModuloSchedulingPass::computePartialOrder() {
//Add nodes that connect this recurrence to recurrences in the partial path
for(std::set<MSchedGraphNode*>::iterator N = new_recurrence.begin(),
NE = new_recurrence.end(); N != NE; ++N)
searchPath(*N, path, nodesToAdd);
NE = new_recurrence.end(); N != NE; ++N)
searchPath(*N, path, nodesToAdd);
//Add nodes to this recurrence if they are not already in the partial order
for(std::set<MSchedGraphNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
@ -1138,6 +1308,7 @@ void ModuloSchedulingPass::computePartialOrder() {
//Add any nodes that are not already in the partial order
//Add them in a set, one set per connected component
std::set<MSchedGraphNode*> lastNodes;
std::set<MSchedGraphNode*> noPredNodes;
for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
E = nodeToAttributesMap.end(); I != E; ++I) {
@ -1150,23 +1321,42 @@ void ModuloSchedulingPass::computePartialOrder() {
found = true;
}
if(!found) {
if(I->first->isBranch()) {
if(I->first->isBranch() && !I->first->hasPredecessors()) {
if(std::find(branches.begin(), branches.end(), I->first) == branches.end())
branches.push_back(I->first);
}
else
else {
lastNodes.insert(I->first);
if(!I->first->hasPredecessors())
noPredNodes.insert(I->first);
}
}
}
//For each node w/out preds, see if there is a path to one of the
//recurrences, and if so add them to that current recc
/*for(std::set<MSchedGraphNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
N != NE; ++N) {
DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
for(std::vector<std::set<MSchedGraphNode*> >::iterator PO = partialOrder.begin(),
PE = partialOrder.end(); PO != PE; ++PO) {
std::vector<MSchedGraphNode*> path;
pathToRecc(*N, path, *PO, lastNodes);
}
}*/
//Break up remaining nodes that are not in the partial order
//into their connected compoenents
while(lastNodes.size() > 0) {
std::set<MSchedGraphNode*> ccSet;
connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
if(ccSet.size() > 0)
partialOrder.push_back(ccSet);
}
///into their connected compoenents
/*while(lastNodes.size() > 0) {
std::set<MSchedGraphNode*> ccSet;
connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
if(ccSet.size() > 0)
partialOrder.push_back(ccSet);
}*/
if(lastNodes.size() > 0)
partialOrder.push_back(lastNodes);
//Clean up branches by putting them in final order
std::map<unsigned, MSchedGraphNode*> branchOrder;
@ -1184,7 +1374,7 @@ void ModuloSchedulingPass::connectedComponentSet(MSchedGraphNode *node, std::set
//Add to final set
if( !ccSet.count(node) && lastNodes.count(node)) {
lastNodes.erase(node);
if(node->isBranch())
if(node->isBranch() && !node->hasPredecessors())
FinalNodeOrder.push_back(node);
else
ccSet.insert(node);
@ -1463,7 +1653,7 @@ void ModuloSchedulingPass::orderNodes() {
//return FinalNodeOrder;
}
bool ModuloSchedulingPass::computeSchedule() {
bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB) {
TIME_REGION(X, "computeSchedule");
@ -1487,8 +1677,17 @@ bool ModuloSchedulingPass::computeSchedule() {
int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
bool hasSucc = false;
bool hasPred = false;
if(!(*I)->isBranch()) {
bool sched;
if((*I)->isBranch())
if((*I)->hasPredecessors())
sched = true;
else
sched = false;
else
sched = true;
if(sched) {
//Loop over nodes in the schedule and determine if they are predecessors
//or successors of the node we are trying to schedule
for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
@ -1528,8 +1727,8 @@ bool ModuloSchedulingPass::computeSchedule() {
B != BE; ++B) {
if((*I)->isPredecessor(*B)) {
int diff = (*I)->getInEdge(*B).getIteDiff();
int ES_Temp = (II+count) + (*B)->getLatency() - diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count) << "\n");
int ES_Temp = (II+count-1) + (*B)->getLatency() - diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count)-1 << "\n");
DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
EarlyStart = std::max(EarlyStart, ES_Temp);
hasPred = true;
@ -1537,8 +1736,8 @@ bool ModuloSchedulingPass::computeSchedule() {
if((*I)->isSuccessor(*B)) {
int diff = (*B)->getInEdge(*I).getIteDiff();
int LS_Temp = (II+count) - (*I)->getLatency() + diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count) << "\n");
int LS_Temp = (II+count-1) - (*I)->getLatency() + diff * II;
DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << (II+count-1) << "\n");
DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
LateStart = std::min(LateStart, LS_Temp);
hasSucc = true;
@ -1562,12 +1761,12 @@ bool ModuloSchedulingPass::computeSchedule() {
success = scheduleNode(*I, LateStart, (LateStart - II +1));
else if(hasPred && hasSucc) {
if(EarlyStart > LateStart) {
//success = false;
LateStart = EarlyStart;
success = false;
//LateStart = EarlyStart;
DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
}
//else
success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
else
success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
}
else
success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
@ -1583,13 +1782,14 @@ bool ModuloSchedulingPass::computeSchedule() {
if(success) {
DEBUG(std::cerr << "Constructing Schedule Kernel\n");
success = schedule.constructKernel(II, branches);
success = schedule.constructKernel(II, branches, indVarInstrs[BB]);
DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
if(!success) {
++IncreasedII;
++II;
schedule.clear();
}
DEBUG(std::cerr << "Final II: " << II << "\n");
}
if(II >= capII) {
@ -1610,12 +1810,12 @@ bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
//Make sure start and end are not negative
if(start < 0) {
start = 0;
//if(start < 0) {
//start = 0;
}
if(end < 0)
end = 0;
//}
//if(end < 0)
//end = 0;
bool forward = true;
if(start > end)
@ -1652,7 +1852,7 @@ bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
return success;
}
void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
//Keep a map to easily know whats in the kernel
std::map<int, std::set<const MachineInstr*> > inKernel;
@ -1671,15 +1871,9 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
maxStageCount = std::max(maxStageCount, I->second);
//Ignore the branch, we will handle this separately
if(I->first->isBranch()) {
branches.push_back(I->first);
continue;
}
//Put int the map so we know what instructions in each stage are in the kernel
DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
inKernel[I->second].insert(I->first->getInst());
DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
inKernel[I->second].insert(I->first);
}
//Get target information to look at machine operands
@ -1691,18 +1885,23 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
DEBUG(std::cerr << "i=" << i << "\n");
for(int j = 0; j <= i; ++j) {
for(int j = i; j >= 0; --j) {
for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
if(inKernel[j].count(&*MI)) {
MachineInstr *instClone = MI->clone();
machineBB->push_back(instClone);
//If its a branch, insert a nop
if(mii->isBranch(instClone->getOpcode()))
BuildMI(machineBB, V9::NOP, 0);
DEBUG(std::cerr << "Cloning: " << *MI << "\n");
Instruction *tmp;
//After cloning, we may need to save the value that this instruction defines
for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
Instruction *tmp;
//get machine operand
MachineOperand &mOp = instClone->getOperand(opNum);
if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
@ -1724,8 +1923,15 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
//Create machine instruction and put int machineBB
MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
MachineInstr *saveValue;
if(mOp.getVRegValue()->getType() == Type::FloatTy)
saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else
saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
}
}
@ -1758,14 +1964,14 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
}
for(std::vector<MSchedGraphNode*>::iterator BR = branches.begin(), BE = branches.end(); BR != BE; ++BR) {
/*for(std::vector<MSchedGraphNode*>::iterator BR = branches.begin(), BE = branches.end(); BR != BE; ++BR) {
//Stick in branch at the end
machineBB->push_back((*BR)->getInst()->clone());
//Add nop
BuildMI(machineBB, V9::NOP, 0);
}
}*/
(((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
@ -1774,18 +1980,18 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
}
}
void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
std::map<int, std::set<const MachineInstr*> > inKernel;
for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
//Ignore the branch, we will handle this separately
if(I->first->isBranch())
continue;
//if(I->first->isBranch())
//continue;
//Put int the map so we know what instructions in each stage are in the kernel
inKernel[I->second].insert(I->first->getInst());
inKernel[I->second].insert(I->first);
}
std::map<Value*, Value*> valPHIs;
@ -1827,7 +2033,7 @@ void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epil
if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
DEBUG(std::cerr << "Writing PHI for " << *(mOp.getVRegValue()) << "\n");
DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
//If this is the last instructions for the max iterations ago, don't update operands
if(inEpilogue.count(mOp.getVRegValue()))
@ -1843,6 +2049,9 @@ void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epil
MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
tempMvec.addTemp((Value*) tmp);
//assert of no kernelPHI for this value
assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
valPHIs[mOp.getVRegValue()] = tmp;
@ -1872,7 +2081,7 @@ void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epil
}
}
void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
//Keep track of operands that are read and saved from a previous iteration. The new clone
//instruction will use the result of the phi instead.
@ -1882,26 +2091,32 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
//Branches are a special case
std::vector<MachineInstr*> branches;
//Create TmpInstructions for the final phis
for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
//Get target information to look at machine operands
const TargetInstrInfo *mii = target.getInstrInfo();
//Create TmpInstructions for the final phis
for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first->getInst()) << "\n";);
DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
if(I->first->isBranch()) {
/*if(I->first->isBranch()) {
//Clone instruction
const MachineInstr *inst = I->first->getInst();
MachineInstr *instClone = inst->clone();
branches.push_back(instClone);
continue;
}
}*/
//Clone instruction
const MachineInstr *inst = I->first->getInst();
const MachineInstr *inst = I->first;
MachineInstr *instClone = inst->clone();
//Insert into machine basic block
machineBB->push_back(instClone);
if(mii->isBranch(instClone->getOpcode()))
BuildMI(machineBB, V9::NOP, 0);
DEBUG(std::cerr << "Cloned Inst: " << *instClone << "\n");
//Loop over Machine Operands
@ -1953,7 +2168,14 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
tempVec.addTemp((Value*) tmp);
//Create new machine instr and put in MBB
MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
MachineInstr *saveValue;
if(mOp.getVRegValue()->getType() == Type::FloatTy)
saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else
saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
//Save for future cleanup
kernelValue[mOp.getVRegValue()] = tmp;
@ -1994,9 +2216,10 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
if(V->second.size() == 1) {
assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
kernelPHIs[V->first][schedule.getMaxStage()-1] = kernelValue[V->first];
}
DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
}
else {
//Keep track of last phi created.
@ -2099,7 +2322,13 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect
if(TMI->isBranch(opc) || TMI->isNop(opc))
continue;
else {
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
if(mOp.getVRegValue()->getType() == Type::FloatTy)
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
break;
}
@ -2110,7 +2339,14 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect
//Remove the phi and replace it with an OR
DEBUG(std::cerr << "Def: " << mOp << "\n");
//newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
if(tmp->getType() == Type::FloatTy)
BuildMI(*kernelBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
else if(tmp->getType() == Type::DoubleTy)
BuildMI(*kernelBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
else
BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
worklist.push_back(std::make_pair(kernelBB, I));
}
@ -2162,7 +2398,14 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect
if(TMI->isBranch(opc) || TMI->isNop(opc))
continue;
else {
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
if(mOp.getVRegValue()->getType() == Type::FloatTy)
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
else
BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
break;
}
@ -2172,7 +2415,13 @@ void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vect
else {
//Remove the phi and replace it with an OR
DEBUG(std::cerr << "Def: " << mOp << "\n");
BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
if(tmp->getType() == Type::FloatTy)
BuildMI(**MB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
else if(tmp->getType() == Type::DoubleTy)
BuildMI(**MB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
else
BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
worklist.push_back(std::make_pair(*MB,I));
}
@ -2213,7 +2462,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
DEBUG(std::cerr << "Reconstructing Loop\n");
//First find the value *'s that we need to "save"
std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;
std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
//Keep track of instructions we have already seen and their stage because
//we don't want to "save" values if they are used in the kernel immediately
@ -2226,7 +2475,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
if(I->second !=0) {
//For this instruction, get the Value*'s that it reads and put them into the set.
//Assert if there is an operand of another type that we need to save
const MachineInstr *inst = I->first->getInst();
const MachineInstr *inst = I->first;
lastInstrs[inst] = I->second;
for(unsigned i=0; i < inst->getNumOperands(); ++i) {

View File

@ -17,6 +17,8 @@
#include "MSSchedule.h"
#include "llvm/Function.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetData.h"
#include <set>
namespace llvm {
@ -42,6 +44,9 @@ namespace llvm {
//Map to hold Value* defs
std::map<const Value*, MachineInstr*> defMap;
//Map to hold list of instructions associate to the induction var for each BB
std::map<const MachineBasicBlock*, std::map<const MachineInstr*, unsigned> > indVarInstrs;
//LLVM Instruction we know we can add TmpInstructions to its MCFI
Instruction *defaultInst;
@ -69,6 +74,8 @@ namespace llvm {
//Internal functions
bool CreateDefMap(MachineBasicBlock *BI);
bool MachineBBisValid(const MachineBasicBlock *BI);
bool assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
std::vector<Instruction*> &stack, BasicBlock *BB);
int calculateResMII(const MachineBasicBlock *BI);
int calculateRecMII(MSchedGraph *graph, int MII);
void calculateNodeAttributes(MSchedGraph *graph, int MII);
@ -101,9 +108,13 @@ namespace llvm {
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &nodesToAdd);
void pathToRecc(MSchedGraphNode *node,
std::vector<MSchedGraphNode*> &path,
std::set<MSchedGraphNode*> &poSet, std::set<MSchedGraphNode*> &lastNodes);
void computePartialOrder();
bool computeSchedule();
bool computeSchedule(const MachineBasicBlock *BB);
bool scheduleNode(MSchedGraphNode *node,
int start, int end);
@ -116,12 +127,12 @@ namespace llvm {
void fixBranches(std::vector<MachineBasicBlock *> &prologues, std::vector<BasicBlock*> &llvm_prologues, MachineBasicBlock *machineBB, BasicBlock *llvmBB, std::vector<MachineBasicBlock *> &epilogues, std::vector<BasicBlock*> &llvm_epilogues, MachineBasicBlock*);
void writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation);
void writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation);
void writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave,std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
void writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave,std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
void writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
void writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
void removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation);
@ -131,6 +142,13 @@ namespace llvm {
ModuloSchedulingPass(TargetMachine &targ) : target(targ) {}
virtual bool runOnFunction(Function &F);
virtual const char* getPassName() const { return "ModuloScheduling"; }
// getAnalysisUsage
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AliasAnalysis>();
AU.addRequired<TargetData>();
}
};
}