mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-21 18:24:23 +00:00
Reapply "blockfreq: Approximate irreducible control flow"
This reverts commit r207287, reapplying r207286. I'm hoping that declaring an explicit struct and instantiating `addBlockEdges()` directly works around the GCC crash from r207286. This is a lot more boilerplate, though. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207438 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -8,6 +8,7 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Shared implementation of BlockFrequency for IR and Machine Instructions.
|
||||
// See the documentation below for BlockFrequencyInfoImpl for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -16,6 +17,7 @@
|
||||
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/PostOrderIterator.h"
|
||||
#include "llvm/ADT/SCCIterator.h"
|
||||
#include "llvm/ADT/iterator_range.h"
|
||||
#include "llvm/IR/BasicBlock.h"
|
||||
#include "llvm/Support/BlockFrequency.h"
|
||||
@ -896,6 +898,13 @@ class MachineFunction;
|
||||
class MachineLoop;
|
||||
class MachineLoopInfo;
|
||||
|
||||
namespace bfi_detail {
|
||||
struct IrreducibleGraph;
|
||||
|
||||
// This is part of a workaround for a GCC 4.7 crash on lambdas.
|
||||
template <class BT> struct BlockEdgesAdder;
|
||||
}
|
||||
|
||||
/// \brief Base class for BlockFrequencyInfoImpl
|
||||
///
|
||||
/// BlockFrequencyInfoImplBase has supporting data structures and some
|
||||
@ -948,6 +957,7 @@ public:
|
||||
typedef SmallVector<BlockNode, 4> NodeList;
|
||||
LoopData *Parent; ///< The parent loop.
|
||||
bool IsPackaged; ///< Whether this has been packaged.
|
||||
uint32_t NumHeaders; ///< Number of headers.
|
||||
ExitMap Exits; ///< Successor edges (and weights).
|
||||
NodeList Nodes; ///< Header and the members of the loop.
|
||||
BlockMass BackedgeMass; ///< Mass returned to loop header.
|
||||
@ -955,11 +965,26 @@ public:
|
||||
Float Scale;
|
||||
|
||||
LoopData(LoopData *Parent, const BlockNode &Header)
|
||||
: Parent(Parent), IsPackaged(false), Nodes(1, Header) {}
|
||||
bool isHeader(const BlockNode &Node) const { return Node == Nodes[0]; }
|
||||
: Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header) {}
|
||||
template <class It1, class It2>
|
||||
LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
|
||||
It2 LastOther)
|
||||
: Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
|
||||
NumHeaders = Nodes.size();
|
||||
Nodes.insert(Nodes.end(), FirstOther, LastOther);
|
||||
}
|
||||
bool isHeader(const BlockNode &Node) const {
|
||||
if (isIrreducible())
|
||||
return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
|
||||
Node);
|
||||
return Node == Nodes[0];
|
||||
}
|
||||
BlockNode getHeader() const { return Nodes[0]; }
|
||||
bool isIrreducible() const { return NumHeaders > 1; }
|
||||
|
||||
NodeList::const_iterator members_begin() const { return Nodes.begin() + 1; }
|
||||
NodeList::const_iterator members_begin() const {
|
||||
return Nodes.begin() + NumHeaders;
|
||||
}
|
||||
NodeList::const_iterator members_end() const { return Nodes.end(); }
|
||||
iterator_range<NodeList::const_iterator> members() const {
|
||||
return make_range(members_begin(), members_end());
|
||||
@ -975,9 +1000,17 @@ public:
|
||||
WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
|
||||
|
||||
bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
|
||||
bool isDoubleLoopHeader() const {
|
||||
return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
|
||||
Loop->Parent->isHeader(Node);
|
||||
}
|
||||
|
||||
LoopData *getContainingLoop() const {
|
||||
return isLoopHeader() ? Loop->Parent : Loop;
|
||||
if (!isLoopHeader())
|
||||
return Loop;
|
||||
if (!isDoubleLoopHeader())
|
||||
return Loop->Parent;
|
||||
return Loop->Parent->Parent;
|
||||
}
|
||||
|
||||
/// \brief Resolve a node to its representative.
|
||||
@ -1011,12 +1044,22 @@ public:
|
||||
/// Get appropriate mass for Node. If Node is a loop-header (whose loop
|
||||
/// has been packaged), returns the mass of its pseudo-node. If it's a
|
||||
/// node inside a packaged loop, it returns the loop's mass.
|
||||
BlockMass &getMass() { return isAPackage() ? Loop->Mass : Mass; }
|
||||
BlockMass &getMass() {
|
||||
if (!isAPackage())
|
||||
return Mass;
|
||||
if (!isADoublePackage())
|
||||
return Loop->Mass;
|
||||
return Loop->Parent->Mass;
|
||||
}
|
||||
|
||||
/// \brief Has ContainingLoop been packaged up?
|
||||
bool isPackaged() const { return getResolvedNode() != Node; }
|
||||
/// \brief Has Loop been packaged up?
|
||||
bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
|
||||
/// \brief Has Loop been packaged up twice?
|
||||
bool isADoublePackage() const {
|
||||
return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
|
||||
}
|
||||
};
|
||||
|
||||
/// \brief Unscaled probability weight.
|
||||
@ -1093,7 +1136,9 @@ public:
|
||||
///
|
||||
/// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
|
||||
/// successor edge.
|
||||
void addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
|
||||
///
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
|
||||
Distribution &Dist);
|
||||
|
||||
/// \brief Add an edge to the distribution.
|
||||
@ -1101,7 +1146,9 @@ public:
|
||||
/// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
|
||||
/// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
|
||||
/// every edge should be a local edge (since all the loops are packaged up).
|
||||
void addToDist(Distribution &Dist, const LoopData *OuterLoop,
|
||||
///
|
||||
/// \return \c true unless aborted due to an irreducible backedge.
|
||||
bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
|
||||
const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
|
||||
|
||||
LoopData &getLoopPackage(const BlockNode &Head) {
|
||||
@ -1110,6 +1157,25 @@ public:
|
||||
return *Working[Head.Index].Loop;
|
||||
}
|
||||
|
||||
/// \brief Analyze irreducible SCCs.
|
||||
///
|
||||
/// Separate irreducible SCCs from \c G, which is an explict graph of \c
|
||||
/// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
|
||||
/// Insert them into \a Loops before \c Insert.
|
||||
///
|
||||
/// \return the \c LoopData nodes representing the irreducible SCCs.
|
||||
iterator_range<std::list<LoopData>::iterator>
|
||||
analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
|
||||
std::list<LoopData>::iterator Insert);
|
||||
|
||||
/// \brief Update a loop after packaging irreducible SCCs inside of it.
|
||||
///
|
||||
/// Update \c OuterLoop. Before finding irreducible control flow, it was
|
||||
/// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
|
||||
/// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
|
||||
/// up need to be removed from \a OuterLoop::Nodes.
|
||||
void updateLoopWithIrreducible(LoopData &OuterLoop);
|
||||
|
||||
/// \brief Distribute mass according to a distribution.
|
||||
///
|
||||
/// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
|
||||
@ -1138,6 +1204,7 @@ public:
|
||||
void clear();
|
||||
|
||||
virtual std::string getBlockName(const BlockNode &Node) const;
|
||||
std::string getLoopName(const LoopData &Loop) const;
|
||||
|
||||
virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
|
||||
void dump() const { print(dbgs()); }
|
||||
@ -1197,6 +1264,106 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
assert(BB && "Unexpected nullptr");
|
||||
return BB->getName().str();
|
||||
}
|
||||
|
||||
/// \brief Graph of irreducible control flow.
|
||||
///
|
||||
/// This graph is used for determining the SCCs in a loop (or top-level
|
||||
/// function) that has irreducible control flow.
|
||||
///
|
||||
/// During the block frequency algorithm, the local graphs are defined in a
|
||||
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
|
||||
/// graphs for most edges, but getting others from \a LoopData::ExitMap. The
|
||||
/// latter only has successor information.
|
||||
///
|
||||
/// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
|
||||
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
|
||||
/// and it explicitly lists predecessors and successors. The initialization
|
||||
/// that relies on \c MachineBasicBlock is defined in the header.
|
||||
struct IrreducibleGraph {
|
||||
typedef BlockFrequencyInfoImplBase BFIBase;
|
||||
|
||||
BFIBase &BFI;
|
||||
|
||||
typedef BFIBase::BlockNode BlockNode;
|
||||
struct IrrNode {
|
||||
BlockNode Node;
|
||||
unsigned NumIn;
|
||||
std::deque<const IrrNode *> Edges;
|
||||
IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
|
||||
|
||||
typedef typename std::deque<const IrrNode *>::const_iterator iterator;
|
||||
iterator pred_begin() const { return Edges.begin(); }
|
||||
iterator succ_begin() const { return Edges.begin() + NumIn; }
|
||||
iterator pred_end() const { return succ_begin(); }
|
||||
iterator succ_end() const { return Edges.end(); }
|
||||
};
|
||||
BlockNode Start;
|
||||
const IrrNode *StartIrr;
|
||||
std::vector<IrrNode> Nodes;
|
||||
SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
|
||||
|
||||
/// \brief Construct an explicit graph containing irreducible control flow.
|
||||
///
|
||||
/// Construct an explicit graph of the control flow in \c OuterLoop (or the
|
||||
/// top-level function, if \c OuterLoop is \c nullptr). Uses \c
|
||||
/// addBlockEdges to add block successors that have not been packaged into
|
||||
/// loops.
|
||||
///
|
||||
/// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
|
||||
/// user of this.
|
||||
template <class BlockEdgesAdder>
|
||||
IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges)
|
||||
: BFI(BFI), StartIrr(nullptr) {
|
||||
initialize(OuterLoop, addBlockEdges);
|
||||
}
|
||||
|
||||
template <class BlockEdgesAdder>
|
||||
void initialize(const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges);
|
||||
void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
|
||||
void addNodesInFunction();
|
||||
void addNode(const BlockNode &Node) {
|
||||
Nodes.emplace_back(Node);
|
||||
BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
|
||||
}
|
||||
void indexNodes();
|
||||
template <class BlockEdgesAdder>
|
||||
void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges);
|
||||
void addEdge(IrrNode &Irr, const BlockNode &Succ,
|
||||
const BFIBase::LoopData *OuterLoop);
|
||||
};
|
||||
template <class BlockEdgesAdder>
|
||||
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges) {
|
||||
if (OuterLoop) {
|
||||
addNodesInLoop(*OuterLoop);
|
||||
for (auto N : OuterLoop->Nodes)
|
||||
addEdges(N, OuterLoop, addBlockEdges);
|
||||
} else {
|
||||
addNodesInFunction();
|
||||
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
|
||||
addEdges(Index, OuterLoop, addBlockEdges);
|
||||
}
|
||||
StartIrr = Lookup[Start.Index];
|
||||
}
|
||||
template <class BlockEdgesAdder>
|
||||
void IrreducibleGraph::addEdges(const BlockNode &Node,
|
||||
const BFIBase::LoopData *OuterLoop,
|
||||
BlockEdgesAdder addBlockEdges) {
|
||||
auto L = Lookup.find(Node.Index);
|
||||
if (L == Lookup.end())
|
||||
return;
|
||||
IrrNode &Irr = *L->second;
|
||||
const auto &Working = BFI.Working[Node.Index];
|
||||
|
||||
if (Working.isAPackage())
|
||||
for (const auto &I : Working.Loop->Exits)
|
||||
addEdge(Irr, I.first, OuterLoop);
|
||||
else
|
||||
addBlockEdges(*this, Irr, OuterLoop);
|
||||
}
|
||||
}
|
||||
|
||||
/// \brief Shared implementation for block frequency analysis.
|
||||
@ -1205,6 +1372,22 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
|
||||
/// blocks.
|
||||
///
|
||||
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
|
||||
/// which is called the header. A given loop, L, can have sub-loops, which are
|
||||
/// loops within the subgraph of L that exclude its header. (A "trivial" SCC
|
||||
/// consists of a single block that does not have a self-edge.)
|
||||
///
|
||||
/// In addition to loops, this algorithm has limited support for irreducible
|
||||
/// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
|
||||
/// discovered on they fly, and modelled as loops with multiple headers.
|
||||
///
|
||||
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
|
||||
/// nodes that are targets of a backedge within it (excluding backedges within
|
||||
/// true sub-loops). Block frequency calculations act as if a block is
|
||||
/// inserted that intercepts all the edges to the headers. All backedges and
|
||||
/// entries point to this block. Its successors are the headers, which split
|
||||
/// the frequency evenly.
|
||||
///
|
||||
/// This algorithm leverages BlockMass and UnsignedFloat to maintain precision,
|
||||
/// separates mass distribution from loop scaling, and dithers to eliminate
|
||||
/// probability mass loss.
|
||||
@ -1228,7 +1411,7 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
/// All other stages make use of this ordering. Save a lookup from BlockT
|
||||
/// to BlockNode (the index into RPOT) in Nodes.
|
||||
///
|
||||
/// 1. Loop indexing (\a initializeLoops()).
|
||||
/// 1. Loop initialization (\a initializeLoops()).
|
||||
///
|
||||
/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
|
||||
/// the algorithm. In particular, store the immediate members of each loop
|
||||
@ -1239,11 +1422,9 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
/// For each loop (bottom-up), distribute mass through the DAG resulting
|
||||
/// from ignoring backedges and treating sub-loops as a single pseudo-node.
|
||||
/// Track the backedge mass distributed to the loop header, and use it to
|
||||
/// calculate the loop scale (number of loop iterations).
|
||||
///
|
||||
/// Visiting loops bottom-up is a post-order traversal of loop headers.
|
||||
/// For each loop, immediate members that represent sub-loops will already
|
||||
/// have been visited and packaged into a pseudo-node.
|
||||
/// calculate the loop scale (number of loop iterations). Immediate
|
||||
/// members that represent sub-loops will already have been visited and
|
||||
/// packaged into a pseudo-node.
|
||||
///
|
||||
/// Distributing mass in a loop is a reverse-post-order traversal through
|
||||
/// the loop. Start by assigning full mass to the Loop header. For each
|
||||
@ -1260,6 +1441,11 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
/// The weight, the successor, and its category are stored in \a
|
||||
/// Distribution. There can be multiple edges to each successor.
|
||||
///
|
||||
/// - If there's a backedge to a non-header, there's an irreducible SCC.
|
||||
/// The usual flow is temporarily aborted. \a
|
||||
/// computeIrreducibleMass() finds the irreducible SCCs within the
|
||||
/// loop, packages them up, and restarts the flow.
|
||||
///
|
||||
/// - Normalize the distribution: scale weights down so that their sum
|
||||
/// is 32-bits, and coalesce multiple edges to the same node.
|
||||
///
|
||||
@ -1274,39 +1460,62 @@ template <> inline std::string getBlockName(const BasicBlock *BB) {
|
||||
/// loops in the function. This uses the same algorithm as distributing
|
||||
/// mass in a loop, except that there are no exit or backedge edges.
|
||||
///
|
||||
/// 4. Loop unpackaging and cleanup (\a finalizeMetrics()).
|
||||
/// 4. Unpackage loops (\a unwrapLoops()).
|
||||
///
|
||||
/// Initialize the frequency to a floating point representation of its
|
||||
/// mass.
|
||||
/// Initialize each block's frequency to a floating point representation of
|
||||
/// its mass.
|
||||
///
|
||||
/// Visit loops top-down (reverse post-order), scaling the loop header's
|
||||
/// frequency by its psuedo-node's mass and loop scale. Keep track of the
|
||||
/// minimum and maximum final frequencies.
|
||||
/// Visit loops top-down, scaling the frequencies of its immediate members
|
||||
/// by the loop's pseudo-node's frequency.
|
||||
///
|
||||
/// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
|
||||
///
|
||||
/// Using the min and max frequencies as a guide, translate floating point
|
||||
/// frequencies to an appropriate range in uint64_t.
|
||||
///
|
||||
/// It has some known flaws.
|
||||
///
|
||||
/// - Irreducible control flow isn't modelled correctly. In particular,
|
||||
/// LoopInfo and MachineLoopInfo ignore irreducible backedges. The main
|
||||
/// result is that irreducible SCCs will under-scaled. No mass is lost,
|
||||
/// but the computed branch weights for the loop pseudo-node will be
|
||||
/// incorrect.
|
||||
/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
|
||||
/// BlockFrequency's 64-bit integer precision.
|
||||
///
|
||||
/// - The model of irreducible control flow is a rough approximation.
|
||||
///
|
||||
/// Modelling irreducible control flow exactly involves setting up and
|
||||
/// solving a group of infinite geometric series. Such precision is
|
||||
/// unlikely to be worthwhile, since most of our algorithms give up on
|
||||
/// irreducible control flow anyway.
|
||||
///
|
||||
/// Nevertheless, we might find that we need to get closer. If
|
||||
/// LoopInfo/MachineLoopInfo flags loops with irreducible control flow
|
||||
/// (and/or the function as a whole), we can find the SCCs, compute an
|
||||
/// approximate exit frequency for the SCC as a whole, and scale up
|
||||
/// accordingly.
|
||||
/// Nevertheless, we might find that we need to get closer. Here's a sort
|
||||
/// of TODO list for the model with diminishing returns, to be completed as
|
||||
/// necessary.
|
||||
///
|
||||
/// - Loop scale is limited to 4096 per loop (2^12) to avoid exhausting
|
||||
/// BlockFrequency's 64-bit integer precision.
|
||||
/// - The headers for the \a LoopData representing an irreducible SCC
|
||||
/// include non-entry blocks. When these extra blocks exist, they
|
||||
/// indicate a self-contained irreducible sub-SCC. We could treat them
|
||||
/// as sub-loops, rather than arbitrarily shoving the problematic
|
||||
/// blocks into the headers of the main irreducible SCC.
|
||||
///
|
||||
/// - Backedge frequencies are assumed to be evenly split between the
|
||||
/// headers of a given irreducible SCC. Instead, we could track the
|
||||
/// backedge mass separately for each header, and adjust their relative
|
||||
/// frequencies.
|
||||
///
|
||||
/// - Entry frequencies are assumed to be evenly split between the
|
||||
/// headers of a given irreducible SCC, which is the only option if we
|
||||
/// need to compute mass in the SCC before its parent loop. Instead,
|
||||
/// we could partially compute mass in the parent loop, and stop when
|
||||
/// we get to the SCC. Here, we have the correct ratio of entry
|
||||
/// masses, which we can use to adjust their relative frequencies.
|
||||
/// Compute mass in the SCC, and then continue propagation in the
|
||||
/// parent.
|
||||
///
|
||||
/// - We can propagate mass iteratively through the SCC, for some fixed
|
||||
/// number of iterations. Each iteration starts by assigning the entry
|
||||
/// blocks their backedge mass from the prior iteration. The final
|
||||
/// mass for each block (and each exit, and the total backedge mass
|
||||
/// used for computing loop scale) is the sum of all iterations.
|
||||
/// (Running this until fixed point would "solve" the geometric
|
||||
/// series by simulation.)
|
||||
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
|
||||
typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
|
||||
@ -1315,6 +1524,9 @@ template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
|
||||
typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
|
||||
|
||||
// This is part of a workaround for a GCC 4.7 crash on lambdas.
|
||||
friend struct bfi_detail::BlockEdgesAdder<BT>;
|
||||
|
||||
typedef GraphTraits<const BlockT *> Successor;
|
||||
typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
|
||||
|
||||
@ -1361,7 +1573,9 @@ template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
///
|
||||
/// In the context of distributing mass through \c OuterLoop, divide the mass
|
||||
/// currently assigned to \c Node between its successors.
|
||||
void propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
|
||||
///
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
|
||||
|
||||
/// \brief Compute mass in a particular loop.
|
||||
///
|
||||
@ -1370,20 +1584,51 @@ template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
|
||||
/// that have not been packaged into sub-loops.
|
||||
///
|
||||
/// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
|
||||
void computeMassInLoop(LoopData &Loop);
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool computeMassInLoop(LoopData &Loop);
|
||||
|
||||
/// \brief Compute mass in all loops.
|
||||
///
|
||||
/// For each loop bottom-up, call \a computeMassInLoop().
|
||||
void computeMassInLoops();
|
||||
|
||||
/// \brief Compute mass in the top-level function.
|
||||
/// \brief Try to compute mass in the top-level function.
|
||||
///
|
||||
/// Assign mass to the entry block, and then for each block in reverse
|
||||
/// post-order, distribute mass to its successors. Skips nodes that have
|
||||
/// been packaged into loops.
|
||||
///
|
||||
/// \pre \a computeMassInLoops() has been called.
|
||||
/// \return \c true unless there's an irreducible backedge.
|
||||
bool tryToComputeMassInFunction();
|
||||
|
||||
/// \brief Compute mass in (and package up) irreducible SCCs.
|
||||
///
|
||||
/// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
|
||||
/// of \c Insert), and call \a computeMassInLoop() on each of them.
|
||||
///
|
||||
/// If \c OuterLoop is \c nullptr, it refers to the top-level function.
|
||||
///
|
||||
/// \pre \a computeMassInLoop() has been called for each subloop of \c
|
||||
/// OuterLoop.
|
||||
/// \pre \c Insert points at the the last loop successfully processed by \a
|
||||
/// computeMassInLoop().
|
||||
/// \pre \c OuterLoop has irreducible SCCs.
|
||||
void computeIrreducibleMass(LoopData *OuterLoop,
|
||||
std::list<LoopData>::iterator Insert);
|
||||
|
||||
/// \brief Compute mass in all loops.
|
||||
///
|
||||
/// For each loop bottom-up, call \a computeMassInLoop().
|
||||
///
|
||||
/// \a computeMassInLoop() aborts (and returns \c false) on loops that
|
||||
/// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
|
||||
/// re-enter \a computeMassInLoop().
|
||||
///
|
||||
/// \post \a computeMassInLoop() has returned \c true for every loop.
|
||||
void computeMassInLoops();
|
||||
|
||||
/// \brief Compute mass in the top-level function.
|
||||
///
|
||||
/// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
|
||||
/// compute mass in the top-level function.
|
||||
///
|
||||
/// \post \a tryToComputeMassInFunction() has returned \c true.
|
||||
void computeMassInFunction();
|
||||
|
||||
std::string getBlockName(const BlockNode &Node) const override {
|
||||
@ -1530,27 +1775,50 @@ template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
|
||||
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
|
||||
// Visit loops with the deepest first, and the top-level loops last.
|
||||
for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L)
|
||||
computeMassInLoop(*L);
|
||||
for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
|
||||
if (computeMassInLoop(*L))
|
||||
continue;
|
||||
auto Next = std::next(L);
|
||||
computeIrreducibleMass(&*L, L.base());
|
||||
L = std::prev(Next);
|
||||
if (computeMassInLoop(*L))
|
||||
continue;
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
}
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
void BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
|
||||
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
|
||||
// Compute mass in loop.
|
||||
DEBUG(dbgs() << "compute-mass-in-loop: " << getBlockName(Loop.getHeader())
|
||||
<< "\n");
|
||||
DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
|
||||
|
||||
Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
|
||||
propagateMassToSuccessors(&Loop, Loop.getHeader());
|
||||
|
||||
for (const BlockNode &M : Loop.members())
|
||||
propagateMassToSuccessors(&Loop, M);
|
||||
if (Loop.isIrreducible()) {
|
||||
BlockMass Remaining = BlockMass::getFull();
|
||||
for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
|
||||
auto &Mass = Working[Loop.Nodes[H].Index].getMass();
|
||||
Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
|
||||
Remaining -= Mass;
|
||||
}
|
||||
for (const BlockNode &M : Loop.Nodes)
|
||||
if (!propagateMassToSuccessors(&Loop, M))
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
} else {
|
||||
Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
|
||||
if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
|
||||
llvm_unreachable("irreducible control flow to loop header!?");
|
||||
for (const BlockNode &M : Loop.members())
|
||||
if (!propagateMassToSuccessors(&Loop, M))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
}
|
||||
|
||||
computeLoopScale(Loop);
|
||||
packageLoop(Loop);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
|
||||
template <class BT>
|
||||
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
|
||||
// Compute mass in function.
|
||||
DEBUG(dbgs() << "compute-mass-in-function\n");
|
||||
assert(!Working.empty() && "no blocks in function");
|
||||
@ -1563,12 +1831,63 @@ template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
|
||||
if (Working[Node.Index].isPackaged())
|
||||
continue;
|
||||
|
||||
propagateMassToSuccessors(nullptr, Node);
|
||||
if (!propagateMassToSuccessors(nullptr, Node))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
|
||||
if (tryToComputeMassInFunction())
|
||||
return;
|
||||
computeIrreducibleMass(nullptr, Loops.begin());
|
||||
if (tryToComputeMassInFunction())
|
||||
return;
|
||||
llvm_unreachable("unhandled irreducible control flow");
|
||||
}
|
||||
|
||||
/// \note This should be a lambda, but that crashes GCC 4.7.
|
||||
namespace bfi_detail {
|
||||
template <class BT> struct BlockEdgesAdder {
|
||||
typedef BT BlockT;
|
||||
typedef BlockFrequencyInfoImplBase::LoopData LoopData;
|
||||
typedef GraphTraits<const BlockT *> Successor;
|
||||
|
||||
const BlockFrequencyInfoImpl<BT> &BFI;
|
||||
explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
|
||||
: BFI(BFI) {}
|
||||
void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
|
||||
const LoopData *OuterLoop) {
|
||||
const BlockT *BB = BFI.RPOT[Irr.Node.Index];
|
||||
for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
|
||||
I != E; ++I)
|
||||
G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
|
||||
}
|
||||
};
|
||||
}
|
||||
template <class BT>
|
||||
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
|
||||
LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
|
||||
DEBUG(dbgs() << "analyze-irreducible-in-";
|
||||
if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
|
||||
else dbgs() << "function\n");
|
||||
|
||||
using namespace bfi_detail;
|
||||
// Ideally, addBlockEdges() would be declared here as a lambda, but that
|
||||
// crashes GCC 4.7.
|
||||
BlockEdgesAdder<BT> addBlockEdges(*this);
|
||||
IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
|
||||
|
||||
for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
|
||||
computeMassInLoop(L);
|
||||
|
||||
if (!OuterLoop)
|
||||
return;
|
||||
updateLoopWithIrreducible(*OuterLoop);
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
void
|
||||
bool
|
||||
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
|
||||
const BlockNode &Node) {
|
||||
DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
|
||||
@ -1576,20 +1895,25 @@ BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
|
||||
Distribution Dist;
|
||||
if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
|
||||
assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
|
||||
addLoopSuccessorsToDist(OuterLoop, *Loop, Dist);
|
||||
if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
} else {
|
||||
const BlockT *BB = getBlock(Node);
|
||||
for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
|
||||
SI != SE; ++SI)
|
||||
// Do not dereference SI, or getEdgeWeight() is linear in the number of
|
||||
// successors.
|
||||
addToDist(Dist, OuterLoop, Node, getNode(*SI),
|
||||
BPI->getEdgeWeight(BB, SI));
|
||||
if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
|
||||
BPI->getEdgeWeight(BB, SI)))
|
||||
// Irreducible backedge.
|
||||
return false;
|
||||
}
|
||||
|
||||
// Distribute mass to successors, saving exit and backedge data in the
|
||||
// loop header.
|
||||
distributeMass(Node, OuterLoop, Dist);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class BT>
|
||||
|
Reference in New Issue
Block a user