[X86][FastIsel] Teach how to select vector load instructions.

This patch teaches fast-isel how to select 128-bit vector load instructions.
Added test CodeGen/X86/fast-isel-vecload.ll

Differential Revision: http://reviews.llvm.org/D8605


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233270 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrea Di Biagio 2015-03-26 11:29:02 +00:00
parent a977f7e771
commit 971eb1b382
2 changed files with 219 additions and 3 deletions

View File

@ -84,7 +84,7 @@ private:
bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, MachineMemOperand *MMO,
unsigned &ResultReg);
unsigned &ResultReg, unsigned Alignment = 1);
bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM,
MachineMemOperand *MMO = nullptr, bool Aligned = false);
@ -327,7 +327,8 @@ bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible.
bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
MachineMemOperand *MMO, unsigned &ResultReg) {
MachineMemOperand *MMO, unsigned &ResultReg,
unsigned Alignment) {
// Get opcode and regclass of the output for the given load instruction.
unsigned Opc = 0;
const TargetRegisterClass *RC = nullptr;
@ -372,6 +373,30 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
case MVT::f80:
// No f80 support yet.
return false;
case MVT::v4f32:
if (Alignment >= 16)
Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
else
Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
RC = &X86::VR128RegClass;
break;
case MVT::v2f64:
if (Alignment >= 16)
Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
else
Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
RC = &X86::VR128RegClass;
break;
case MVT::v4i32:
case MVT::v2i64:
case MVT::v8i16:
case MVT::v16i8:
if (Alignment >= 16)
Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
else
Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
RC = &X86::VR128RegClass;
break;
}
ResultReg = createResultReg(RC);
@ -1068,8 +1093,14 @@ bool X86FastISel::X86SelectLoad(const Instruction *I) {
if (!X86SelectAddress(Ptr, AM))
return false;
unsigned Alignment = LI->getAlignment();
unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = ABIAlignment;
unsigned ResultReg = 0;
if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg))
if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
Alignment))
return false;
updateValueMap(I, ResultReg);

View File

@ -0,0 +1,185 @@
; RUN: llc -O0 -fast-isel -fast-isel-abort=1 -mtriple=x86_64-unknown-unknown -mattr=+sse2 < %s | FileCheck %s --check-prefix=SSE --check-prefix=ALL
; RUN: llc -O0 -fast-isel -fast-isel-abort=1 -mtriple=x86_64-unknown-unknown -mattr=+avx < %s | FileCheck %s --check-prefix=AVX --check-prefix=ALL
; Verify that fast-isel knows how to select aligned/unaligned vector loads.
; Also verify that the selected load instruction is in the correct domain.
define <16 x i8> @test_v16i8(<16 x i8>* %V) {
; ALL-LABEL: test_v16i8:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <16 x i8>, <16 x i8>* %V, align 16
ret <16 x i8> %0
}
define <8 x i16> @test_v8i16(<8 x i16>* %V) {
; ALL-LABEL: test_v8i16:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <8 x i16>, <8 x i16>* %V, align 16
ret <8 x i16> %0
}
define <4 x i32> @test_v4i32(<4 x i32>* %V) {
; ALL-LABEL: test_v4i32:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x i32>, <4 x i32>* %V, align 16
ret <4 x i32> %0
}
define <2 x i64> @test_v2i64(<2 x i64>* %V) {
; ALL-LABEL: test_v2i64:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x i64>, <2 x i64>* %V, align 16
ret <2 x i64> %0
}
define <16 x i8> @test_v16i8_unaligned(<16 x i8>* %V) {
; ALL-LABEL: test_v16i8_unaligned:
; SSE: movdqu (%rdi), %xmm0
; AVX: vmovdqu (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <16 x i8>, <16 x i8>* %V, align 4
ret <16 x i8> %0
}
define <8 x i16> @test_v8i16_unaligned(<8 x i16>* %V) {
; ALL-LABEL: test_v8i16_unaligned:
; SSE: movdqu (%rdi), %xmm0
; AVX: vmovdqu (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <8 x i16>, <8 x i16>* %V, align 4
ret <8 x i16> %0
}
define <4 x i32> @test_v4i32_unaligned(<4 x i32>* %V) {
; ALL-LABEL: test_v4i32_unaligned:
; SSE: movdqu (%rdi), %xmm0
; AVX: vmovdqu (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x i32>, <4 x i32>* %V, align 4
ret <4 x i32> %0
}
define <2 x i64> @test_v2i64_unaligned(<2 x i64>* %V) {
; ALL-LABEL: test_v2i64_unaligned:
; SSE: movdqu (%rdi), %xmm0
; AVX: vmovdqu (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x i64>, <2 x i64>* %V, align 4
ret <2 x i64> %0
}
define <4 x float> @test_v4f32(<4 x float>* %V) {
; ALL-LABEL: test_v4f32:
; SSE: movaps (%rdi), %xmm0
; AVX: vmovaps (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x float>, <4 x float>* %V, align 16
ret <4 x float> %0
}
define <2 x double> @test_v2f64(<2 x double>* %V) {
; ALL-LABEL: test_v2f64:
; SSE: movapd (%rdi), %xmm0
; AVX: vmovapd (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x double>, <2 x double>* %V, align 16
ret <2 x double> %0
}
define <4 x float> @test_v4f32_unaligned(<4 x float>* %V) {
; ALL-LABEL: test_v4f32_unaligned:
; SSE: movups (%rdi), %xmm0
; AVX: vmovups (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x float>, <4 x float>* %V, align 4
ret <4 x float> %0
}
define <2 x double> @test_v2f64_unaligned(<2 x double>* %V) {
; ALL-LABEL: test_v2f64_unaligned:
; SSE: movupd (%rdi), %xmm0
; AVX: vmovupd (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x double>, <2 x double>* %V, align 4
ret <2 x double> %0
}
define <16 x i8> @test_v16i8_abi_alignment(<16 x i8>* %V) {
; ALL-LABEL: test_v16i8_abi_alignment:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <16 x i8>, <16 x i8>* %V
ret <16 x i8> %0
}
define <8 x i16> @test_v8i16_abi_alignment(<8 x i16>* %V) {
; ALL-LABEL: test_v8i16_abi_alignment:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <8 x i16>, <8 x i16>* %V
ret <8 x i16> %0
}
define <4 x i32> @test_v4i32_abi_alignment(<4 x i32>* %V) {
; ALL-LABEL: test_v4i32_abi_alignment:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x i32>, <4 x i32>* %V
ret <4 x i32> %0
}
define <2 x i64> @test_v2i64_abi_alignment(<2 x i64>* %V) {
; ALL-LABEL: test_v2i64_abi_alignment:
; SSE: movdqa (%rdi), %xmm0
; AVX: vmovdqa (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x i64>, <2 x i64>* %V
ret <2 x i64> %0
}
define <4 x float> @test_v4f32_abi_alignment(<4 x float>* %V) {
; ALL-LABEL: test_v4f32_abi_alignment:
; SSE: movaps (%rdi), %xmm0
; AVX: vmovaps (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <4 x float>, <4 x float>* %V
ret <4 x float> %0
}
define <2 x double> @test_v2f64_abi_alignment(<2 x double>* %V) {
; ALL-LABEL: test_v2f64_abi_alignment:
; SSE: movapd (%rdi), %xmm0
; AVX: vmovapd (%rdi), %xmm0
; ALL-NEXT: retq
entry:
%0 = load <2 x double>, <2 x double>* %V
ret <2 x double> %0
}