mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
switch x86-64 return value lowering over to using same mechanism as argument
lowering uses. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@34657 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
13513b7a50
commit
9774c915f1
@ -429,79 +429,103 @@ X86TargetLowering::X86TargetLowering(TargetMachine &TM)
|
||||
// Return Value Calling Convention Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
|
||||
/// GetRetValueLocs - If we are returning a set of values with the specified
|
||||
/// value types, determine the set of registers each one will land in. This
|
||||
/// sets one element of the ResultRegs array for each element in the VTs array.
|
||||
static void GetRetValueLocs(const MVT::ValueType *VTs, unsigned NumVTs,
|
||||
unsigned *ResultRegs,
|
||||
const X86Subtarget *Subtarget,
|
||||
unsigned CC) {
|
||||
if (NumVTs == 0) return;
|
||||
/// X86_RetCC_Assign - Implement the X86 return value conventions. This returns
|
||||
/// true if the value wasn't handled by this CC.
|
||||
static bool X86_RetCC_Assign(unsigned ValNo, MVT::ValueType ValVT,
|
||||
unsigned ArgFlags, CCState &State) {
|
||||
MVT::ValueType LocVT = ValVT;
|
||||
CCValAssign::LocInfo LocInfo = CCValAssign::Full;
|
||||
|
||||
if (NumVTs == 2) {
|
||||
ResultRegs[0] = VTs[0] == MVT::i64 ? X86::RAX : X86::EAX;
|
||||
ResultRegs[1] = VTs[1] == MVT::i64 ? X86::RDX : X86::EDX;
|
||||
return;
|
||||
// If this is a 32-bit value, assign to a 32-bit register if any are
|
||||
// available.
|
||||
if (LocVT == MVT::i8) {
|
||||
static const unsigned GPR8ArgRegs[] = { X86::AL, X86::DL };
|
||||
if (unsigned Reg = State.AllocateReg(GPR8ArgRegs, 2)) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, NumVTs is 1.
|
||||
MVT::ValueType ArgVT = VTs[0];
|
||||
|
||||
unsigned Reg;
|
||||
switch (ArgVT) {
|
||||
case MVT::i8: Reg = X86::AL; break;
|
||||
case MVT::i16: Reg = X86::AX; break;
|
||||
case MVT::i32: Reg = X86::EAX; break;
|
||||
case MVT::i64: Reg = X86::RAX; break;
|
||||
case MVT::f32:
|
||||
case MVT::f64:
|
||||
if (Subtarget->is64Bit())
|
||||
if (LocVT == MVT::i16) {
|
||||
static const unsigned GPR16ArgRegs[] = { X86::AX, X86::DX };
|
||||
if (unsigned Reg = State.AllocateReg(GPR16ArgRegs, 2)) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (LocVT == MVT::i32) {
|
||||
static const unsigned GPR32ArgRegs[] = { X86::EAX, X86::EDX };
|
||||
if (unsigned Reg = State.AllocateReg(GPR32ArgRegs, 2)) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (LocVT == MVT::i64) {
|
||||
static const unsigned GPR64ArgRegs[] = { X86::RAX, X86::RDX };
|
||||
if (unsigned Reg = State.AllocateReg(GPR64ArgRegs, 2)) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (MVT::isVector(LocVT)) {
|
||||
if (unsigned Reg = State.AllocateReg(X86::XMM0)) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (LocVT == MVT::f32 || LocVT == MVT::f64) {
|
||||
unsigned Reg;
|
||||
if (State.getTarget().getSubtarget<X86Subtarget>().is64Bit())
|
||||
Reg = X86::XMM0; // FP values in X86-64 go in XMM0.
|
||||
else if (CC == CallingConv::Fast && Subtarget->hasSSE2())
|
||||
else if (State.getCallingConv() == CallingConv::Fast &&
|
||||
State.getTarget().getSubtarget<X86Subtarget>().hasSSE2())
|
||||
Reg = X86::XMM0; // FP values in X86-32 with fastcc go in XMM0.
|
||||
else
|
||||
Reg = X86::ST0; // FP values in X86-32 go in ST0.
|
||||
break;
|
||||
default:
|
||||
assert(MVT::isVector(ArgVT) && "Unknown return value type!");
|
||||
Reg = X86::XMM0; // Int/FP vector result -> XMM0.
|
||||
break;
|
||||
|
||||
if ((Reg = State.AllocateReg(Reg))) {
|
||||
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
ResultRegs[0] = Reg;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// LowerRET - Lower an ISD::RET node.
|
||||
SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
|
||||
assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
|
||||
|
||||
// Support up returning up to two registers.
|
||||
MVT::ValueType VTs[2];
|
||||
unsigned DestRegs[2];
|
||||
unsigned NumRegs = Op.getNumOperands() / 2;
|
||||
assert(NumRegs <= 2 && "Can only return up to two regs!");
|
||||
|
||||
for (unsigned i = 0; i != NumRegs; ++i)
|
||||
VTs[i] = Op.getOperand(i*2+1).getValueType();
|
||||
SmallVector<CCValAssign, 16> RVLocs;
|
||||
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
|
||||
CCState CCInfo(CC, getTargetMachine(), RVLocs);
|
||||
|
||||
// Determine which register each value should be copied into.
|
||||
GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget,
|
||||
DAG.getMachineFunction().getFunction()->getCallingConv());
|
||||
for (unsigned i = 0; i != Op.getNumOperands() / 2; ++i) {
|
||||
if (X86_RetCC_Assign(i, Op.getOperand(i*2+1).getValueType(),
|
||||
cast<ConstantSDNode>(Op.getOperand(i*2+2))->getValue(),
|
||||
CCInfo))
|
||||
assert(0 && "Unhandled result type!");
|
||||
}
|
||||
|
||||
// If this is the first return lowered for this function, add the regs to the
|
||||
// liveout set for the function.
|
||||
if (DAG.getMachineFunction().liveout_empty()) {
|
||||
for (unsigned i = 0; i != NumRegs; ++i)
|
||||
DAG.getMachineFunction().addLiveOut(DestRegs[i]);
|
||||
for (unsigned i = 0; i != RVLocs.size(); ++i)
|
||||
if (RVLocs[i].isRegLoc())
|
||||
DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
|
||||
}
|
||||
|
||||
SDOperand Chain = Op.getOperand(0);
|
||||
SDOperand Flag;
|
||||
|
||||
// Copy the result values into the output registers.
|
||||
if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
|
||||
for (unsigned i = 0; i != NumRegs; ++i) {
|
||||
Chain = DAG.getCopyToReg(Chain, DestRegs[i], Op.getOperand(i*2+1), Flag);
|
||||
if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
|
||||
RVLocs[0].getLocReg() != X86::ST0) {
|
||||
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
||||
CCValAssign &VA = RVLocs[i];
|
||||
assert(VA.isRegLoc() && "Can only return in registers!");
|
||||
Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
|
||||
Flag);
|
||||
Flag = Chain.getValue(1);
|
||||
}
|
||||
} else {
|
||||
@ -522,14 +546,14 @@ SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
|
||||
MemLoc = Value.getOperand(1);
|
||||
} else {
|
||||
// Spill the value to memory and reload it into top of stack.
|
||||
unsigned Size = MVT::getSizeInBits(VTs[0])/8;
|
||||
unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
|
||||
MachineFunction &MF = DAG.getMachineFunction();
|
||||
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
|
||||
MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
|
||||
Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
|
||||
}
|
||||
SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
|
||||
SDOperand Ops[] = { Chain, MemLoc, DAG.getValueType(VTs[0]) };
|
||||
SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
|
||||
Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
|
||||
Chain = Value.getValue(1);
|
||||
}
|
||||
@ -558,23 +582,19 @@ LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
|
||||
unsigned CallingConv, SelectionDAG &DAG) {
|
||||
SmallVector<SDOperand, 8> ResultVals;
|
||||
|
||||
// We support returning up to two registers.
|
||||
MVT::ValueType VTs[2];
|
||||
unsigned DestRegs[2];
|
||||
unsigned NumRegs = TheCall->getNumValues() - 1;
|
||||
assert(NumRegs <= 2 && "Can only return up to two regs!");
|
||||
SmallVector<CCValAssign, 16> RVLocs;
|
||||
CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
|
||||
|
||||
for (unsigned i = 0; i != NumRegs; ++i)
|
||||
VTs[i] = TheCall->getValueType(i);
|
||||
|
||||
// Determine which register each value should be copied into.
|
||||
GetRetValueLocs(VTs, NumRegs, DestRegs, Subtarget, CallingConv);
|
||||
for (unsigned i = 0, e = TheCall->getNumValues() - 1; i != e; ++i) {
|
||||
if (X86_RetCC_Assign(i, TheCall->getValueType(i), 0, CCInfo))
|
||||
assert(0 && "Unhandled result type!");
|
||||
}
|
||||
|
||||
// Copy all of the result registers out of their specified physreg.
|
||||
if (NumRegs != 1 || DestRegs[0] != X86::ST0) {
|
||||
for (unsigned i = 0; i != NumRegs; ++i) {
|
||||
Chain = DAG.getCopyFromReg(Chain, DestRegs[i], VTs[i],
|
||||
InFlag).getValue(1);
|
||||
if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
|
||||
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
||||
Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
|
||||
RVLocs[i].getValVT(), InFlag).getValue(1);
|
||||
InFlag = Chain.getValue(2);
|
||||
ResultVals.push_back(Chain.getValue(0));
|
||||
}
|
||||
@ -599,14 +619,14 @@ LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
|
||||
int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
|
||||
SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
|
||||
SDOperand Ops[] = {
|
||||
Chain, RetVal, StackSlot, DAG.getValueType(VTs[0]), InFlag
|
||||
Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
|
||||
};
|
||||
Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
|
||||
RetVal = DAG.getLoad(VTs[0], Chain, StackSlot, NULL, 0);
|
||||
RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
|
||||
Chain = RetVal.getValue(1);
|
||||
}
|
||||
|
||||
if (VTs[0] == MVT::f32 && !X86ScalarSSE)
|
||||
if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
|
||||
// FIXME: we would really like to remember that this FP_ROUND
|
||||
// operation is okay to eliminate if we allow excess FP precision.
|
||||
RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
|
||||
|
Loading…
x
Reference in New Issue
Block a user