* Be TBAA safe

* Fix isFPCSafeToPrint to find more constants safe to print, which it was
  failing because ftostr was padding with leading space characters.
* Scan the entire module for global constants instead of each function at a
  time.  This has the advantage of allowing us to emit constants at global
  scope instead of function scope.  This speeds FP programs quite a bit.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9048 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2003-10-12 04:36:29 +00:00
parent b3dab903c5
commit 9860e77110
2 changed files with 118 additions and 64 deletions

View File

@ -69,6 +69,7 @@ namespace {
private :
bool nameAllUsedStructureTypes(Module &M);
void printModule(Module *M);
void printFloatingPointConstants(Module &M);
void printSymbolTable(const SymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
void printFunctionSignature(const Function *F, bool Prototype);
@ -337,6 +338,10 @@ void CWriter::printConstantArray(ConstantArray *CPA) {
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
std::string StrVal = ftostr(CFP->getValue());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
@ -435,7 +440,7 @@ void CWriter::printConstant(Constant *CPV) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FloatConstant" << I->second << ")";
<< "*)&FPConstant" << I->second << ")";
} else {
// Print out the constant as a floating point number.
Out << ftostr(FPC->getValue());
@ -669,6 +674,9 @@ void CWriter::printModule(Module *M) {
}
}
// Output all floating point constants that cannot be printed accurately...
printFloatingPointConstants(*M);
// Output all of the functions...
emittedInvoke = false;
if (!M->empty()) {
@ -684,8 +692,56 @@ void CWriter::printModule(Module *M) {
<< "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list "
<< "__attribute__((common)) = 0;\n";
}
// Done with global FP constants
FPConstantMap.clear();
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Module &M) {
union {
double D;
unsigned long long U;
} DBLUnion;
union {
float F;
unsigned U;
} FLTUnion;
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
unsigned FPCounter = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
for (constant_iterator I = constant_begin(F), E = constant_end(F);
I != E; ++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
!FPConstantMap.count(FPC)) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
DBLUnion.D = Val;
Out << "const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << DBLUnion.U << std::dec
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
FLTUnion.F = Val;
Out << "const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << FLTUnion.U << std::dec
<< "U; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << "\n";
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit it's declaration...
@ -840,42 +896,14 @@ void CWriter::printFunction(Function *F) {
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, (*I)->getType(), Mang->getValueName(*I)+"__PHI_TEMPORARY");
printType(Out, (*I)->getType(),
Mang->getValueName(*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
}
Out << "\n";
// Scan the function for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
unsigned FPCounter = 0;
for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if ((!isFPCSafeToPrint(FPC)) // Do not put in FPConstantMap if safe.
&& (FPConstantMap.find(FPC) == FPConstantMap.end())) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy)
Out << " const ConstantDoubleTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec
<< "ULL; /* " << Val << " */\n";
else if (FPC->getType() == Type::FloatTy) {
float fVal = Val;
Out << " const ConstantFloatTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned*)&fVal << std::dec
<< "U; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << "\n";
// print the basic blocks
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
BasicBlock *Prev = BB->getPrev();
@ -915,7 +943,6 @@ void CWriter::printFunction(Function *F) {
}
Out << "}\n\n";
FPConstantMap.clear();
}
// Specific Instruction type classes... note that all of the casts are

View File

@ -69,6 +69,7 @@ namespace {
private :
bool nameAllUsedStructureTypes(Module &M);
void printModule(Module *M);
void printFloatingPointConstants(Module &M);
void printSymbolTable(const SymbolTable &ST);
void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
void printFunctionSignature(const Function *F, bool Prototype);
@ -337,6 +338,10 @@ void CWriter::printConstantArray(ConstantArray *CPA) {
//
static bool isFPCSafeToPrint(const ConstantFP *CFP) {
std::string StrVal = ftostr(CFP->getValue());
while (StrVal[0] == ' ')
StrVal.erase(StrVal.begin());
// Check to make sure that the stringized number is not some string like "Inf"
// or NaN. Check that the string matches the "[-+]?[0-9]" regex.
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
@ -435,7 +440,7 @@ void CWriter::printConstant(Constant *CPV) {
// Because of FP precision problems we must load from a stack allocated
// value that holds the value in hex.
Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double")
<< "*)&FloatConstant" << I->second << ")";
<< "*)&FPConstant" << I->second << ")";
} else {
// Print out the constant as a floating point number.
Out << ftostr(FPC->getValue());
@ -669,6 +674,9 @@ void CWriter::printModule(Module *M) {
}
}
// Output all floating point constants that cannot be printed accurately...
printFloatingPointConstants(*M);
// Output all of the functions...
emittedInvoke = false;
if (!M->empty()) {
@ -684,8 +692,56 @@ void CWriter::printModule(Module *M) {
<< "struct __llvm_jmpbuf_list_t *__llvm_jmpbuf_list "
<< "__attribute__((common)) = 0;\n";
}
// Done with global FP constants
FPConstantMap.clear();
}
/// Output all floating point constants that cannot be printed accurately...
void CWriter::printFloatingPointConstants(Module &M) {
union {
double D;
unsigned long long U;
} DBLUnion;
union {
float F;
unsigned U;
} FLTUnion;
// Scan the module for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
unsigned FPCounter = 0;
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
for (constant_iterator I = constant_begin(F), E = constant_end(F);
I != E; ++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
!FPConstantMap.count(FPC)) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy) {
DBLUnion.D = Val;
Out << "const ConstantDoubleTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << DBLUnion.U << std::dec
<< "ULL; /* " << Val << " */\n";
} else if (FPC->getType() == Type::FloatTy) {
FLTUnion.F = Val;
Out << "const ConstantFloatTy FPConstant" << FPCounter++
<< " = 0x" << std::hex << FLTUnion.U << std::dec
<< "U; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << "\n";
}
/// printSymbolTable - Run through symbol table looking for type names. If a
/// type name is found, emit it's declaration...
@ -840,42 +896,14 @@ void CWriter::printFunction(Function *F) {
if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
Out << " ";
printType(Out, (*I)->getType(), Mang->getValueName(*I)+"__PHI_TEMPORARY");
printType(Out, (*I)->getType(),
Mang->getValueName(*I)+"__PHI_TEMPORARY");
Out << ";\n";
}
}
Out << "\n";
// Scan the function for floating point constants. If any FP constant is used
// in the function, we want to redirect it here so that we do not depend on
// the precision of the printed form, unless the printed form preserves
// precision.
//
unsigned FPCounter = 0;
for (constant_iterator I = constant_begin(F), E = constant_end(F); I != E;++I)
if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
if ((!isFPCSafeToPrint(FPC)) // Do not put in FPConstantMap if safe.
&& (FPConstantMap.find(FPC) == FPConstantMap.end())) {
double Val = FPC->getValue();
FPConstantMap[FPC] = FPCounter; // Number the FP constants
if (FPC->getType() == Type::DoubleTy)
Out << " const ConstantDoubleTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned long long*)&Val << std::dec
<< "ULL; /* " << Val << " */\n";
else if (FPC->getType() == Type::FloatTy) {
float fVal = Val;
Out << " const ConstantFloatTy FloatConstant" << FPCounter++
<< " = 0x" << std::hex << *(unsigned*)&fVal << std::dec
<< "U; /* " << Val << " */\n";
} else
assert(0 && "Unknown float type!");
}
Out << "\n";
// print the basic blocks
for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
BasicBlock *Prev = BB->getPrev();
@ -915,7 +943,6 @@ void CWriter::printFunction(Function *F) {
}
Out << "}\n\n";
FPConstantMap.clear();
}
// Specific Instruction type classes... note that all of the casts are