InstCombe: Infer nsw for multiplies

We already utilize this logic for reducing overflow intrinsics, it makes
sense to reuse it for normal multiplies as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224847 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
David Majnemer
2014-12-26 09:10:14 +00:00
parent 654a66dbd3
commit 998ae69abe
5 changed files with 100 additions and 86 deletions

View File

@ -890,7 +890,6 @@ static bool checkRippleForAdd(const APInt &Op0KnownZero,
/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
/// This basically requires proving that the add in the original type would not
/// overflow to change the sign bit or have a carry out.
/// TODO: Handle this for Vectors.
bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
Instruction *CxtI) {
// There are different heuristics we can use for this. Here are some simple
@ -914,28 +913,27 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
ComputeNumSignBits(RHS, 0, CxtI) > 1)
return true;
if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
int BitWidth = IT->getBitWidth();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
// Addition of two 2's compliment numbers having opposite signs will never
// overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
return true;
// Addition of two 2's compliment numbers having opposite signs will never
// overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
return true;
// Check if carry bit of addition will not cause overflow.
if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
return true;
if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
return true;
// Check if carry bit of addition will not cause overflow.
if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
return true;
if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
return true;
}
return false;
}
@ -947,8 +945,8 @@ bool InstCombiner::WillNotOverflowUnsignedAdd(Value *LHS, Value *RHS,
// If the sign bit of LHS and that of RHS are both zero, no unsigned wrap.
bool LHSKnownNonNegative, LHSKnownNegative;
bool RHSKnownNonNegative, RHSKnownNegative;
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT);
ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT);
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI);
ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI);
if (LHSKnownNonNegative && RHSKnownNonNegative)
return true;
@ -968,24 +966,22 @@ bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
ComputeNumSignBits(RHS, 0, CxtI) > 1)
return true;
if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
unsigned BitWidth = IT->getBitWidth();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
APInt LHSKnownZero(BitWidth, 0);
APInt LHSKnownOne(BitWidth, 0);
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
APInt RHSKnownZero(BitWidth, 0);
APInt RHSKnownOne(BitWidth, 0);
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, CxtI);
// Subtraction of two 2's compliment numbers having identical signs will
// never overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
return true;
// Subtraction of two 2's compliment numbers having identical signs will
// never overflow.
if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
(LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
return true;
// TODO: implement logic similar to checkRippleForAdd
}
// TODO: implement logic similar to checkRippleForAdd
return false;
}
@ -996,59 +992,14 @@ bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
// If the LHS is negative and the RHS is non-negative, no unsigned wrap.
bool LHSKnownNonNegative, LHSKnownNegative;
bool RHSKnownNonNegative, RHSKnownNegative;
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, 0, AT, CxtI, DT);
ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, 0, AT, CxtI, DT);
ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0, CxtI);
ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0, CxtI);
if (LHSKnownNegative && RHSKnownNonNegative)
return true;
return false;
}
/// \brief Return true if we can prove that:
/// (mul LHS, RHS) === (mul nsw LHS, RHS)
bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
Instruction *CxtI) {
if (IntegerType *IT = dyn_cast<IntegerType>(LHS->getType())) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading sign bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = IT->getBitWidth();
// Note that underestimating the number of sign bits gives a more
// conservative answer.
unsigned SignBits = ComputeNumSignBits(LHS, 0, CxtI) +
ComputeNumSignBits(RHS, 0, CxtI);
// First handle the easy case: if we have enough sign bits there's
// definitely no overflow.
if (SignBits > BitWidth + 1)
return true;
// There are two ambiguous cases where there can be no overflow:
// SignBits == BitWidth + 1 and
// SignBits == BitWidth
// The second case is difficult to check, therefore we only handle the
// first case.
if (SignBits == BitWidth + 1) {
// It overflows only when both arguments are negative and the true
// product is exactly the minimum negative number.
// E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
// For simplicity we just check if at least one side is not negative.
bool LHSNonNegative, LHSNegative;
bool RHSNonNegative, RHSNegative;
ComputeSignBit(LHS, LHSNonNegative, LHSNegative, DL, 0, AT, CxtI, DT);
ComputeSignBit(RHS, RHSNonNegative, RHSNegative, DL, 0, AT, CxtI, DT);
if (LHSNonNegative || RHSNonNegative)
return true;
}
}
return false;
}
// Checks if any operand is negative and we can convert add to sub.
// This function checks for following negative patterns
// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))