mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 20:32:21 +00:00
Delete SplittingSpiller. It was not being used by anyone, and it is being
superceded by SplitKit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118754 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
8a66a202f6
commit
a05f60b241
@ -29,7 +29,7 @@
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
enum SpillerName { trivial, standard, splitting, inline_ };
|
||||
enum SpillerName { trivial, standard, inline_ };
|
||||
}
|
||||
|
||||
static cl::opt<SpillerName>
|
||||
@ -38,7 +38,6 @@ spillerOpt("spiller",
|
||||
cl::Prefix,
|
||||
cl::values(clEnumVal(trivial, "trivial spiller"),
|
||||
clEnumVal(standard, "default spiller"),
|
||||
clEnumVal(splitting, "splitting spiller"),
|
||||
clEnumValN(inline_, "inline", "inline spiller"),
|
||||
clEnumValEnd),
|
||||
cl::init(standard));
|
||||
@ -232,289 +231,6 @@ public:
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
namespace {
|
||||
|
||||
/// When a call to spill is placed this spiller will first try to break the
|
||||
/// interval up into its component values (one new interval per value).
|
||||
/// If this fails, or if a call is placed to spill a previously split interval
|
||||
/// then the spiller falls back on the standard spilling mechanism.
|
||||
class SplittingSpiller : public StandardSpiller {
|
||||
public:
|
||||
SplittingSpiller(MachineFunctionPass &pass, MachineFunction &mf,
|
||||
VirtRegMap &vrm)
|
||||
: StandardSpiller(pass, mf, vrm) {
|
||||
mri = &mf.getRegInfo();
|
||||
tii = mf.getTarget().getInstrInfo();
|
||||
tri = mf.getTarget().getRegisterInfo();
|
||||
}
|
||||
|
||||
void spill(LiveInterval *li,
|
||||
SmallVectorImpl<LiveInterval*> &newIntervals,
|
||||
const SmallVectorImpl<LiveInterval*> &spillIs) {
|
||||
if (worthTryingToSplit(li))
|
||||
tryVNISplit(li);
|
||||
else
|
||||
StandardSpiller::spill(li, newIntervals, spillIs);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
MachineRegisterInfo *mri;
|
||||
const TargetInstrInfo *tii;
|
||||
const TargetRegisterInfo *tri;
|
||||
DenseSet<LiveInterval*> alreadySplit;
|
||||
|
||||
bool worthTryingToSplit(LiveInterval *li) const {
|
||||
return (!alreadySplit.count(li) && li->getNumValNums() > 1);
|
||||
}
|
||||
|
||||
/// Try to break a LiveInterval into its component values.
|
||||
std::vector<LiveInterval*> tryVNISplit(LiveInterval *li) {
|
||||
|
||||
DEBUG(dbgs() << "Trying VNI split of %reg" << *li << "\n");
|
||||
|
||||
std::vector<LiveInterval*> added;
|
||||
SmallVector<VNInfo*, 4> vnis;
|
||||
|
||||
std::copy(li->vni_begin(), li->vni_end(), std::back_inserter(vnis));
|
||||
|
||||
for (SmallVectorImpl<VNInfo*>::iterator vniItr = vnis.begin(),
|
||||
vniEnd = vnis.end(); vniItr != vniEnd; ++vniItr) {
|
||||
VNInfo *vni = *vniItr;
|
||||
|
||||
// Skip unused VNIs.
|
||||
if (vni->isUnused())
|
||||
continue;
|
||||
|
||||
DEBUG(dbgs() << " Extracted Val #" << vni->id << " as ");
|
||||
LiveInterval *splitInterval = extractVNI(li, vni);
|
||||
|
||||
if (splitInterval != 0) {
|
||||
DEBUG(dbgs() << *splitInterval << "\n");
|
||||
added.push_back(splitInterval);
|
||||
alreadySplit.insert(splitInterval);
|
||||
} else {
|
||||
DEBUG(dbgs() << "0\n");
|
||||
}
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << "Original LI: " << *li << "\n");
|
||||
|
||||
// If there original interval still contains some live ranges
|
||||
// add it to added and alreadySplit.
|
||||
if (!li->empty()) {
|
||||
added.push_back(li);
|
||||
alreadySplit.insert(li);
|
||||
}
|
||||
|
||||
return added;
|
||||
}
|
||||
|
||||
/// Extract the given value number from the interval.
|
||||
LiveInterval* extractVNI(LiveInterval *li, VNInfo *vni) const {
|
||||
assert((lis->getInstructionFromIndex(vni->def) != 0 || vni->isPHIDef()) &&
|
||||
"Def index not sane?");
|
||||
|
||||
// Create a new vreg and live interval, copy VNI ranges over.
|
||||
const TargetRegisterClass *trc = mri->getRegClass(li->reg);
|
||||
unsigned newVReg = mri->createVirtualRegister(trc);
|
||||
vrm->grow();
|
||||
LiveInterval *newLI = &lis->getOrCreateInterval(newVReg);
|
||||
VNInfo *newVNI = newLI->createValueCopy(vni, lis->getVNInfoAllocator());
|
||||
|
||||
// Start by copying all live ranges in the VN to the new interval.
|
||||
for (LiveInterval::iterator rItr = li->begin(), rEnd = li->end();
|
||||
rItr != rEnd; ++rItr) {
|
||||
if (rItr->valno == vni) {
|
||||
newLI->addRange(LiveRange(rItr->start, rItr->end, newVNI));
|
||||
}
|
||||
}
|
||||
|
||||
// Erase the old VNI & ranges.
|
||||
li->removeValNo(vni);
|
||||
|
||||
// Collect all current uses of the register belonging to the given VNI.
|
||||
// We'll use this to rename the register after we've dealt with the def.
|
||||
std::set<MachineInstr*> uses;
|
||||
for (MachineRegisterInfo::use_iterator
|
||||
useItr = mri->use_begin(li->reg), useEnd = mri->use_end();
|
||||
useItr != useEnd; ++useItr) {
|
||||
uses.insert(&*useItr);
|
||||
}
|
||||
|
||||
// Process the def instruction for this VNI.
|
||||
if (newVNI->isPHIDef()) {
|
||||
// Insert a copy at the start of the MBB. The range proceeding the
|
||||
// copy will be attached to the original LiveInterval.
|
||||
MachineBasicBlock *defMBB = lis->getMBBFromIndex(newVNI->def);
|
||||
MachineInstr *copyMI = BuildMI(*defMBB, defMBB->begin(), DebugLoc(),
|
||||
tii->get(TargetOpcode::COPY), newVReg)
|
||||
.addReg(li->reg, RegState::Kill);
|
||||
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
|
||||
SlotIndex phiDefIdx = lis->getMBBStartIdx(defMBB);
|
||||
assert(lis->getInstructionFromIndex(phiDefIdx) == 0 &&
|
||||
"PHI def index points at actual instruction.");
|
||||
VNInfo *phiDefVNI = li->getNextValue(phiDefIdx,
|
||||
0, lis->getVNInfoAllocator());
|
||||
phiDefVNI->setIsPHIDef(true);
|
||||
li->addRange(LiveRange(phiDefVNI->def, copyIdx.getDefIndex(), phiDefVNI));
|
||||
LiveRange *oldPHIDefRange =
|
||||
newLI->getLiveRangeContaining(lis->getMBBStartIdx(defMBB));
|
||||
|
||||
// If the old phi def starts in the middle of the range chop it up.
|
||||
if (oldPHIDefRange->start < lis->getMBBStartIdx(defMBB)) {
|
||||
LiveRange oldPHIDefRange2(copyIdx.getDefIndex(), oldPHIDefRange->end,
|
||||
oldPHIDefRange->valno);
|
||||
oldPHIDefRange->end = lis->getMBBStartIdx(defMBB);
|
||||
newLI->addRange(oldPHIDefRange2);
|
||||
} else if (oldPHIDefRange->start == lis->getMBBStartIdx(defMBB)) {
|
||||
// Otherwise if it's at the start of the range just trim it.
|
||||
oldPHIDefRange->start = copyIdx.getDefIndex();
|
||||
} else {
|
||||
assert(false && "PHI def range doesn't cover PHI def?");
|
||||
}
|
||||
|
||||
newVNI->def = copyIdx.getDefIndex();
|
||||
newVNI->setCopy(copyMI);
|
||||
newVNI->setIsPHIDef(false); // not a PHI def anymore.
|
||||
} else {
|
||||
// non-PHI def. Rename the def. If it's two-addr that means renaming the
|
||||
// use and inserting a new copy too.
|
||||
MachineInstr *defInst = lis->getInstructionFromIndex(newVNI->def);
|
||||
// We'll rename this now, so we can remove it from uses.
|
||||
uses.erase(defInst);
|
||||
unsigned defOpIdx = defInst->findRegisterDefOperandIdx(li->reg);
|
||||
bool isTwoAddr = defInst->isRegTiedToUseOperand(defOpIdx),
|
||||
twoAddrUseIsUndef = false;
|
||||
|
||||
for (unsigned i = 0; i < defInst->getNumOperands(); ++i) {
|
||||
MachineOperand &mo = defInst->getOperand(i);
|
||||
if (mo.isReg() && (mo.isDef() || isTwoAddr) && (mo.getReg()==li->reg)) {
|
||||
mo.setReg(newVReg);
|
||||
if (isTwoAddr && mo.isUse() && mo.isUndef())
|
||||
twoAddrUseIsUndef = true;
|
||||
}
|
||||
}
|
||||
|
||||
SlotIndex defIdx = lis->getInstructionIndex(defInst);
|
||||
newVNI->def = defIdx.getDefIndex();
|
||||
|
||||
if (isTwoAddr && !twoAddrUseIsUndef) {
|
||||
MachineBasicBlock *defMBB = defInst->getParent();
|
||||
MachineInstr *copyMI = BuildMI(*defMBB, defInst, DebugLoc(),
|
||||
tii->get(TargetOpcode::COPY), newVReg)
|
||||
.addReg(li->reg, RegState::Kill);
|
||||
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
|
||||
LiveRange *origUseRange =
|
||||
li->getLiveRangeContaining(newVNI->def.getUseIndex());
|
||||
origUseRange->end = copyIdx.getDefIndex();
|
||||
VNInfo *copyVNI = newLI->getNextValue(copyIdx.getDefIndex(), copyMI,
|
||||
lis->getVNInfoAllocator());
|
||||
LiveRange copyRange(copyIdx.getDefIndex(),defIdx.getDefIndex(),copyVNI);
|
||||
newLI->addRange(copyRange);
|
||||
}
|
||||
}
|
||||
|
||||
for (std::set<MachineInstr*>::iterator
|
||||
usesItr = uses.begin(), usesEnd = uses.end();
|
||||
usesItr != usesEnd; ++usesItr) {
|
||||
MachineInstr *useInst = *usesItr;
|
||||
SlotIndex useIdx = lis->getInstructionIndex(useInst);
|
||||
LiveRange *useRange =
|
||||
newLI->getLiveRangeContaining(useIdx.getUseIndex());
|
||||
|
||||
// If this use doesn't belong to the new interval skip it.
|
||||
if (useRange == 0)
|
||||
continue;
|
||||
|
||||
// This use doesn't belong to the VNI, skip it.
|
||||
if (useRange->valno != newVNI)
|
||||
continue;
|
||||
|
||||
// Check if this instr is two address.
|
||||
unsigned useOpIdx = useInst->findRegisterUseOperandIdx(li->reg);
|
||||
bool isTwoAddress = useInst->isRegTiedToDefOperand(useOpIdx);
|
||||
|
||||
// Rename uses (and defs for two-address instrs).
|
||||
for (unsigned i = 0; i < useInst->getNumOperands(); ++i) {
|
||||
MachineOperand &mo = useInst->getOperand(i);
|
||||
if (mo.isReg() && (mo.isUse() || isTwoAddress) &&
|
||||
(mo.getReg() == li->reg)) {
|
||||
mo.setReg(newVReg);
|
||||
}
|
||||
}
|
||||
|
||||
// If this is a two address instruction we've got some extra work to do.
|
||||
if (isTwoAddress) {
|
||||
// We modified the def operand, so we need to copy back to the original
|
||||
// reg.
|
||||
MachineBasicBlock *useMBB = useInst->getParent();
|
||||
MachineBasicBlock::iterator useItr(useInst);
|
||||
MachineInstr *copyMI = BuildMI(*useMBB, llvm::next(useItr), DebugLoc(),
|
||||
tii->get(TargetOpcode::COPY), newVReg)
|
||||
.addReg(li->reg, RegState::Kill);
|
||||
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
|
||||
|
||||
// Change the old two-address defined range & vni to start at
|
||||
// (and be defined by) the copy.
|
||||
LiveRange *origDefRange =
|
||||
li->getLiveRangeContaining(useIdx.getDefIndex());
|
||||
origDefRange->start = copyIdx.getDefIndex();
|
||||
origDefRange->valno->def = copyIdx.getDefIndex();
|
||||
origDefRange->valno->setCopy(copyMI);
|
||||
|
||||
// Insert a new range & vni for the two-address-to-copy value. This
|
||||
// will be attached to the new live interval.
|
||||
VNInfo *copyVNI =
|
||||
newLI->getNextValue(useIdx.getDefIndex(), 0,
|
||||
lis->getVNInfoAllocator());
|
||||
LiveRange copyRange(useIdx.getDefIndex(),copyIdx.getDefIndex(),copyVNI);
|
||||
newLI->addRange(copyRange);
|
||||
}
|
||||
}
|
||||
|
||||
// Iterate over any PHI kills - we'll need to insert new copies for them.
|
||||
for (LiveInterval::iterator LRI = newLI->begin(), LRE = newLI->end();
|
||||
LRI != LRE; ++LRI) {
|
||||
if (LRI->valno != newVNI)
|
||||
continue;
|
||||
SlotIndex killIdx = LRI->end;
|
||||
MachineBasicBlock *killMBB = lis->getMBBFromIndex(killIdx);
|
||||
MachineInstr *copyMI = BuildMI(*killMBB, killMBB->getFirstTerminator(),
|
||||
DebugLoc(), tii->get(TargetOpcode::COPY),
|
||||
li->reg)
|
||||
.addReg(newVReg, RegState::Kill);
|
||||
SlotIndex copyIdx = lis->InsertMachineInstrInMaps(copyMI);
|
||||
|
||||
// Save the current end. We may need it to add a new range if the
|
||||
// current range runs of the end of the MBB.
|
||||
SlotIndex newKillRangeEnd = LRI->end;
|
||||
LRI->end = copyIdx.getDefIndex();
|
||||
|
||||
if (newKillRangeEnd != lis->getMBBEndIdx(killMBB)) {
|
||||
assert(newKillRangeEnd > lis->getMBBEndIdx(killMBB) &&
|
||||
"PHI kill range doesn't reach kill-block end. Not sane.");
|
||||
newLI->addRange(LiveRange(lis->getMBBEndIdx(killMBB),
|
||||
newKillRangeEnd, newVNI));
|
||||
}
|
||||
|
||||
VNInfo *newKillVNI = li->getNextValue(copyIdx.getDefIndex(),
|
||||
copyMI, lis->getVNInfoAllocator());
|
||||
newKillVNI->setHasPHIKill(true);
|
||||
li->addRange(LiveRange(copyIdx.getDefIndex(),
|
||||
lis->getMBBEndIdx(killMBB),
|
||||
newKillVNI));
|
||||
}
|
||||
newVNI->setHasPHIKill(false);
|
||||
|
||||
return newLI;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
|
||||
namespace llvm {
|
||||
Spiller *createInlineSpiller(MachineFunctionPass &pass,
|
||||
MachineFunction &mf,
|
||||
@ -528,7 +244,6 @@ llvm::Spiller* llvm::createSpiller(MachineFunctionPass &pass,
|
||||
default: assert(0 && "unknown spiller");
|
||||
case trivial: return new TrivialSpiller(pass, mf, vrm);
|
||||
case standard: return new StandardSpiller(pass, mf, vrm);
|
||||
case splitting: return new SplittingSpiller(pass, mf, vrm);
|
||||
case inline_: return createInlineSpiller(pass, mf, vrm);
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user