add abbrevs for the constants tables. This shrinks it from 4.49755e6 bits

to 3.85972e6 bits in kc++


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36778 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2007-05-05 07:36:14 +00:00
parent 02a13b5c50
commit a0f1ecc45e

View File

@ -34,7 +34,13 @@ enum {
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
VST_ENTRY_7_ABBREV, VST_ENTRY_7_ABBREV,
VST_ENTRY_6_ABBREV, VST_ENTRY_6_ABBREV,
VST_BBENTRY_6_ABBREV VST_BBENTRY_6_ABBREV,
// CONSTANTS_BLOCK abbrev id's.
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
CONSTANTS_INTEGER_ABBREV,
CONSTANTS_CE_CAST_Abbrev,
CONSTANTS_NULL_Abbrev
}; };
@ -396,10 +402,22 @@ static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
static void WriteConstants(unsigned FirstVal, unsigned LastVal, static void WriteConstants(unsigned FirstVal, unsigned LastVal,
const ValueEnumerator &VE, const ValueEnumerator &VE,
BitstreamWriter &Stream) { BitstreamWriter &Stream, bool isGlobal) {
if (FirstVal == LastVal) return; if (FirstVal == LastVal) return;
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 2); Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
unsigned AggregateAbbrev = 0;
unsigned GEPAbbrev = 0;
// If this is a constant pool for the module, emit module-specific abbrevs.
if (isGlobal) {
// Abbrev for CST_CODE_AGGREGATE.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
AggregateAbbrev = Stream.EmitAbbrev(Abbv);
}
// FIXME: Install and use abbrevs to reduce size. Install them globally so // FIXME: Install and use abbrevs to reduce size. Install them globally so
// they don't need to be reemitted for each function body. // they don't need to be reemitted for each function body.
@ -414,7 +432,8 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
if (V->getType() != LastTy) { if (V->getType() != LastTy) {
LastTy = V->getType(); LastTy = V->getType();
Record.push_back(VE.getTypeID(LastTy)); Record.push_back(VE.getTypeID(LastTy));
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record); Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
CONSTANTS_SETTYPE_ABBREV);
Record.clear(); Record.clear();
} }
@ -437,6 +456,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
else else
Record.push_back((-V << 1) | 1); Record.push_back((-V << 1) | 1);
Code = bitc::CST_CODE_INTEGER; Code = bitc::CST_CODE_INTEGER;
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
} else { // Wide integers, > 64 bits in size. } else { // Wide integers, > 64 bits in size.
// We have an arbitrary precision integer value to write whose // We have an arbitrary precision integer value to write whose
// bit width is > 64. However, in canonical unsigned integer // bit width is > 64. However, in canonical unsigned integer
@ -466,6 +486,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Code = bitc::CST_CODE_AGGREGATE; Code = bitc::CST_CODE_AGGREGATE;
for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
Record.push_back(VE.getValueID(C->getOperand(i))); Record.push_back(VE.getValueID(C->getOperand(i)));
AbbrevToUse = AggregateAbbrev;
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) { switch (CE->getOpcode()) {
default: default:
@ -474,6 +495,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
Record.push_back(VE.getValueID(C->getOperand(0))); Record.push_back(VE.getValueID(C->getOperand(0)));
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
} else { } else {
assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
Code = bitc::CST_CODE_CE_BINOP; Code = bitc::CST_CODE_CE_BINOP;
@ -488,6 +510,7 @@ static void WriteConstants(unsigned FirstVal, unsigned LastVal,
Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
Record.push_back(VE.getValueID(C->getOperand(i))); Record.push_back(VE.getValueID(C->getOperand(i)));
} }
AbbrevToUse = GEPAbbrev;
break; break;
case Instruction::Select: case Instruction::Select:
Code = bitc::CST_CODE_CE_SELECT; Code = bitc::CST_CODE_CE_SELECT;
@ -540,7 +563,7 @@ static void WriteModuleConstants(const ValueEnumerator &VE,
// We know globalvalues have been emitted by WriteModuleInfo. // We know globalvalues have been emitted by WriteModuleInfo.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) { for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
if (!isa<GlobalValue>(Vals[i].first)) { if (!isa<GlobalValue>(Vals[i].first)) {
WriteConstants(i, Vals.size(), VE, Stream); WriteConstants(i, Vals.size(), VE, Stream, true);
return; return;
} }
} }
@ -821,7 +844,7 @@ static void WriteFunction(const Function &F, ValueEnumerator &VE,
// If there are function-local constants, emit them now. // If there are function-local constants, emit them now.
unsigned CstStart, CstEnd; unsigned CstStart, CstEnd;
VE.getFunctionConstantRange(CstStart, CstEnd); VE.getFunctionConstantRange(CstStart, CstEnd);
WriteConstants(CstStart, CstEnd, VE, Stream); WriteConstants(CstStart, CstEnd, VE, Stream, false);
// Finally, emit all the instructions, in order. // Finally, emit all the instructions, in order.
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
@ -875,60 +898,8 @@ static void WriteTypeSymbolTable(const TypeSymbolTable &TST,
Stream.ExitBlock(); Stream.ExitBlock();
} }
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
// Emit the version number if it is non-zero.
if (CurVersion) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
}
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(M);
// Emit information about parameter attributes.
WriteParamAttrTable(VE, Stream);
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
// Emit constants.
WriteModuleConstants(VE, Stream);
// If we have any aggregate values in the value table, purge them - these can
// only be used to initialize global variables. Doing so makes the value
// namespace smaller for code in functions.
int NumNonAggregates = VE.PurgeAggregateValues();
if (NumNonAggregates != -1) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(NumNonAggregates);
Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
}
// Emit function bodies.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
WriteFunction(*I, VE, Stream);
// Emit the type symbol table information.
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
Stream.ExitBlock();
}
// Emit blockinfo, which defines the standard abbreviations etc. // Emit blockinfo, which defines the standard abbreviations etc.
static void WriteBlockInfo(BitstreamWriter &Stream) { static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
// We only want to emit block info records for blocks that have multiple // We only want to emit block info records for blocks that have multiple
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
// blocks can defined their abbrevs inline. // blocks can defined their abbrevs inline.
@ -976,6 +947,100 @@ static void WriteBlockInfo(BitstreamWriter &Stream) {
assert(0 && "Unexpected abbrev ordering!"); assert(0 && "Unexpected abbrev ordering!");
} }
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
Log2_32_Ceil(VE.getTypes().size()+1)));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_SETTYPE_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // INTEGER abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_INTEGER_ABBREV)
assert(0 && "Unexpected abbrev ordering!");
}
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
Log2_32_Ceil(VE.getTypes().size()+1)));
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_CE_CAST_Abbrev)
assert(0 && "Unexpected abbrev ordering!");
}
{ // NULL abbrev for CONSTANTS_BLOCK.
BitCodeAbbrev *Abbv = new BitCodeAbbrev();
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
Abbv) != CONSTANTS_NULL_Abbrev)
assert(0 && "Unexpected abbrev ordering!");
}
Stream.ExitBlock();
}
/// WriteModule - Emit the specified module to the bitstream.
static void WriteModule(const Module *M, BitstreamWriter &Stream) {
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
// Emit the version number if it is non-zero.
if (CurVersion) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(CurVersion);
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
}
// Analyze the module, enumerating globals, functions, etc.
ValueEnumerator VE(M);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(VE, Stream);
// Emit information about parameter attributes.
WriteParamAttrTable(VE, Stream);
// Emit information describing all of the types in the module.
WriteTypeTable(VE, Stream);
// Emit top-level description of module, including target triple, inline asm,
// descriptors for global variables, and function prototype info.
WriteModuleInfo(M, VE, Stream);
// Emit constants.
WriteModuleConstants(VE, Stream);
// If we have any aggregate values in the value table, purge them - these can
// only be used to initialize global variables. Doing so makes the value
// namespace smaller for code in functions.
int NumNonAggregates = VE.PurgeAggregateValues();
if (NumNonAggregates != -1) {
SmallVector<unsigned, 1> Vals;
Vals.push_back(NumNonAggregates);
Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals);
}
// Emit function bodies.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
if (!I->isDeclaration())
WriteFunction(*I, VE, Stream);
// Emit the type symbol table information.
WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream);
// Emit names for globals/functions etc.
WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
Stream.ExitBlock(); Stream.ExitBlock();
} }
@ -996,9 +1061,6 @@ void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) {
Stream.Emit(0xE, 4); Stream.Emit(0xE, 4);
Stream.Emit(0xD, 4); Stream.Emit(0xD, 4);
// Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(Stream);
// Emit the module. // Emit the module.
WriteModule(M, Stream); WriteModule(M, Stream);