mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-14 00:32:55 +00:00
Implement a little hack for parity with GCC on crafty. This speeds up
186.crafty by about 16% (from 15.109s to 13.045s) on my system. This turns allocas with unions/casts into scalars. For example crafty has something like this: union doub { unsigned short i[4]; long long d; }; int f(long long a) { return ((union doub){.d=a}).i[1]; } Instead of generating loads and stores to an alloca, we now promote the whole thing to a scalar long value. This implements: Transforms/ScalarRepl/AggregatePromote.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24667 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
fa8f80ae0a
commit
a188894d67
@ -26,9 +26,10 @@
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Analysis/Dominators.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Target/TargetData.h"
|
||||
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
||||
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||
#include "llvm/Support/MathExtras.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/ADT/Statistic.h"
|
||||
#include "llvm/ADT/StringExtras.h"
|
||||
@ -37,6 +38,8 @@ using namespace llvm;
|
||||
namespace {
|
||||
Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
|
||||
Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
|
||||
Statistic<> NumConverted("scalarrepl",
|
||||
"Number of aggregates converted to scalar");
|
||||
|
||||
struct SROA : public FunctionPass {
|
||||
bool runOnFunction(Function &F);
|
||||
@ -59,6 +62,10 @@ namespace {
|
||||
int isSafeAllocaToScalarRepl(AllocationInst *AI);
|
||||
void CanonicalizeAllocaUsers(AllocationInst *AI);
|
||||
AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
|
||||
|
||||
const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
|
||||
void ConvertToScalar(AllocationInst *AI, const Type *Ty);
|
||||
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
|
||||
};
|
||||
|
||||
RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
|
||||
@ -112,7 +119,6 @@ bool SROA::performPromotion(Function &F) {
|
||||
return Changed;
|
||||
}
|
||||
|
||||
|
||||
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
|
||||
// which runs on all of the malloc/alloca instructions in the function, removing
|
||||
// them if they are only used by getelementptr instructions.
|
||||
@ -131,6 +137,16 @@ bool SROA::performScalarRepl(Function &F) {
|
||||
while (!WorkList.empty()) {
|
||||
AllocationInst *AI = WorkList.back();
|
||||
WorkList.pop_back();
|
||||
|
||||
// If we can turn this aggregate value (potentially with casts) into a
|
||||
// simple scalar value that can be mem2reg'd into a register value.
|
||||
bool IsNotTrivial = false;
|
||||
if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
|
||||
if (IsNotTrivial) {
|
||||
ConvertToScalar(AI, ActualType);
|
||||
Changed = true;
|
||||
continue;
|
||||
}
|
||||
|
||||
// We cannot transform the allocation instruction if it is an array
|
||||
// allocation (allocations OF arrays are ok though), and an allocation of a
|
||||
@ -378,3 +394,262 @@ void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// MergeInType - Add the 'In' type to the accumulated type so far. If the
|
||||
/// types are incompatible, return true, otherwise update Accum and return
|
||||
/// false.
|
||||
static bool MergeInType(const Type *In, const Type *&Accum) {
|
||||
if (!In->isIntegral()) return true;
|
||||
|
||||
// If this is our first type, just use it.
|
||||
if (Accum == Type::VoidTy) {
|
||||
Accum = In;
|
||||
} else {
|
||||
// Otherwise pick whichever type is larger.
|
||||
if (In->getTypeID() > Accum->getTypeID())
|
||||
Accum = In;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
|
||||
/// as big as the specified type. If there is no suitable type, this returns
|
||||
/// null.
|
||||
const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
|
||||
if (NumBits > 64) return 0;
|
||||
if (NumBits > 32) return Type::ULongTy;
|
||||
if (NumBits > 16) return Type::UIntTy;
|
||||
if (NumBits > 8) return Type::UShortTy;
|
||||
return Type::UByteTy;
|
||||
}
|
||||
|
||||
/// CanConvertToScalar - V is a pointer. If we can convert the pointee to a
|
||||
/// single scalar integer type, return that type. Further, if the use is not
|
||||
/// a completely trivial use that mem2reg could promote, set IsNotTrivial. If
|
||||
/// there are no uses of this pointer, return Type::VoidTy to differentiate from
|
||||
/// failure.
|
||||
///
|
||||
const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
|
||||
const Type *UsedType = Type::VoidTy; // No uses, no forced type.
|
||||
const TargetData &TD = getAnalysis<TargetData>();
|
||||
const PointerType *PTy = cast<PointerType>(V->getType());
|
||||
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
||||
Instruction *User = cast<Instruction>(*UI);
|
||||
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
||||
if (MergeInType(LI->getType(), UsedType))
|
||||
return 0;
|
||||
|
||||
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
||||
// Storing the pointer, not the into the value?
|
||||
if (SI->getOperand(0) == V) return 0;
|
||||
|
||||
// NOTE: We could handle storing of FP imms here!
|
||||
|
||||
if (MergeInType(SI->getOperand(0)->getType(), UsedType))
|
||||
return 0;
|
||||
} else if (CastInst *CI = dyn_cast<CastInst>(User)) {
|
||||
if (!isa<PointerType>(CI->getType())) return 0;
|
||||
IsNotTrivial = true;
|
||||
const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
|
||||
if (!SubTy || MergeInType(SubTy, UsedType)) return 0;
|
||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
||||
// Check to see if this is stepping over an element: GEP Ptr, int C
|
||||
if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
|
||||
unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
|
||||
unsigned ElSize = TD.getTypeSize(PTy->getElementType());
|
||||
unsigned BitOffset = Idx*ElSize*8;
|
||||
if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
|
||||
|
||||
IsNotTrivial = true;
|
||||
const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
|
||||
if (SubElt == 0) return 0;
|
||||
if (SubElt != Type::VoidTy) {
|
||||
const Type *NewTy =
|
||||
getUIntAtLeastAsBitAs(SubElt->getPrimitiveSizeInBits()+BitOffset);
|
||||
if (NewTy == 0 || MergeInType(NewTy, UsedType)) return 0;
|
||||
continue;
|
||||
}
|
||||
} else if (GEP->getNumOperands() == 3 &&
|
||||
isa<ConstantInt>(GEP->getOperand(1)) &&
|
||||
isa<ConstantInt>(GEP->getOperand(2)) &&
|
||||
cast<Constant>(GEP->getOperand(1))->isNullValue()) {
|
||||
// We are stepping into an element, e.g. a structure or an array:
|
||||
// GEP Ptr, int 0, uint C
|
||||
const Type *AggTy = PTy->getElementType();
|
||||
unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
|
||||
|
||||
if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
|
||||
if (Idx >= ATy->getNumElements()) return 0; // Out of range.
|
||||
} else if (const PackedType *PTy = dyn_cast<PackedType>(AggTy)) {
|
||||
if (Idx >= PTy->getNumElements()) return 0; // Out of range.
|
||||
} else if (isa<StructType>(AggTy)) {
|
||||
// Structs are always ok.
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
|
||||
if (NTy == 0 || MergeInType(NTy, UsedType)) return 0;
|
||||
const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
|
||||
if (SubTy == 0) return 0;
|
||||
if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
|
||||
return 0;
|
||||
continue; // Everything looks ok
|
||||
}
|
||||
return 0;
|
||||
} else {
|
||||
// Cannot handle this!
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return UsedType;
|
||||
}
|
||||
|
||||
/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
|
||||
/// predicate and is non-trivial. Convert it to something that can be trivially
|
||||
/// promoted into a register by mem2reg.
|
||||
void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
|
||||
DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << " TYPE = "
|
||||
<< *ActualTy << "\n");
|
||||
++NumConverted;
|
||||
|
||||
BasicBlock *EntryBlock = AI->getParent();
|
||||
assert(EntryBlock == &EntryBlock->getParent()->front() &&
|
||||
"Not in the entry block!");
|
||||
EntryBlock->getInstList().remove(AI); // Take the alloca out of the program.
|
||||
|
||||
// Create and insert the alloca.
|
||||
AllocaInst *NewAI = new AllocaInst(ActualTy->getUnsignedVersion(), 0,
|
||||
AI->getName(), EntryBlock->begin());
|
||||
ConvertUsesToScalar(AI, NewAI, 0);
|
||||
delete AI;
|
||||
}
|
||||
|
||||
|
||||
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
|
||||
/// directly. Offset is an offset from the original alloca, in bits that need
|
||||
/// to be shifted to the right. By the end of this, there should be no uses of
|
||||
/// Ptr.
|
||||
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
|
||||
while (!Ptr->use_empty()) {
|
||||
Instruction *User = cast<Instruction>(Ptr->use_back());
|
||||
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
||||
// The load is a bit extract from NewAI shifted right by Offset bits.
|
||||
Value *NV = new LoadInst(NewAI, LI->getName(), LI);
|
||||
if (Offset)
|
||||
NV = new ShiftInst(Instruction::Shr, NV,
|
||||
ConstantUInt::get(Type::UByteTy, Offset),
|
||||
LI->getName(), LI);
|
||||
if (NV->getType() != LI->getType())
|
||||
NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
|
||||
LI->replaceAllUsesWith(NV);
|
||||
LI->eraseFromParent();
|
||||
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
||||
assert(SI->getOperand(0) != Ptr && "Consistency error!");
|
||||
|
||||
// Convert the stored type to the actual type, shift it left to insert
|
||||
// then 'or' into place.
|
||||
Value *SV = SI->getOperand(0);
|
||||
if (SV->getType() == NewAI->getType()->getElementType()) {
|
||||
assert(Offset == 0 && "Store out of bounds!");
|
||||
} else {
|
||||
Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
|
||||
// If SV is signed, convert it to unsigned, so that the next cast zero
|
||||
// extends the value.
|
||||
if (SV->getType()->isSigned())
|
||||
SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
|
||||
SV->getName(), SI);
|
||||
SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
|
||||
if (Offset)
|
||||
SV = new ShiftInst(Instruction::Shl, SV,
|
||||
ConstantUInt::get(Type::UByteTy, Offset),
|
||||
SV->getName()+".adj", SI);
|
||||
// Mask out the bits we are about to insert from the old value.
|
||||
unsigned TotalBits = SV->getType()->getPrimitiveSizeInBits();
|
||||
unsigned InsertBits =
|
||||
SI->getOperand(0)->getType()->getPrimitiveSizeInBits();
|
||||
if (TotalBits != InsertBits) {
|
||||
assert(TotalBits > InsertBits);
|
||||
uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
|
||||
if (TotalBits != 64)
|
||||
Mask = Mask & ((1ULL << TotalBits)-1);
|
||||
Old = BinaryOperator::createAnd(Old,
|
||||
ConstantUInt::get(Old->getType(), Mask),
|
||||
Old->getName()+".mask", SI);
|
||||
SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
|
||||
}
|
||||
}
|
||||
new StoreInst(SV, NewAI, SI);
|
||||
SI->eraseFromParent();
|
||||
|
||||
} else if (CastInst *CI = dyn_cast<CastInst>(User)) {
|
||||
unsigned NewOff = Offset;
|
||||
const TargetData &TD = getAnalysis<TargetData>();
|
||||
if (TD.isBigEndian()) {
|
||||
// Adjust the pointer. For example, storing 16-bits into a 32-bit
|
||||
// alloca with just a cast makes it modify the top 16-bits.
|
||||
const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
|
||||
const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
|
||||
int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
|
||||
NewOff += PtrDiffBits;
|
||||
}
|
||||
ConvertUsesToScalar(CI, NewAI, NewOff);
|
||||
CI->eraseFromParent();
|
||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
||||
const PointerType *AggPtrTy =
|
||||
cast<PointerType>(GEP->getOperand(0)->getType());
|
||||
const TargetData &TD = getAnalysis<TargetData>();
|
||||
unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
|
||||
|
||||
// Check to see if this is stepping over an element: GEP Ptr, int C
|
||||
unsigned NewOffset = Offset;
|
||||
if (GEP->getNumOperands() == 2) {
|
||||
unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
|
||||
unsigned BitOffset = Idx*AggSizeInBits;
|
||||
|
||||
if (TD.isLittleEndian())
|
||||
NewOffset += BitOffset;
|
||||
else
|
||||
NewOffset -= BitOffset;
|
||||
|
||||
} else if (GEP->getNumOperands() == 3) {
|
||||
// We know that operand #2 is zero.
|
||||
unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
|
||||
const Type *AggTy = AggPtrTy->getElementType();
|
||||
if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
|
||||
unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
|
||||
|
||||
if (TD.isLittleEndian())
|
||||
NewOffset += ElSizeBits*Idx;
|
||||
else
|
||||
NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
|
||||
} else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
|
||||
unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
|
||||
|
||||
if (TD.isLittleEndian())
|
||||
NewOffset += EltBitOffset;
|
||||
else {
|
||||
const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
|
||||
unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
|
||||
NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
|
||||
}
|
||||
|
||||
} else {
|
||||
assert(0 && "Unsupported operation!");
|
||||
abort();
|
||||
}
|
||||
} else {
|
||||
assert(0 && "Unsupported operation!");
|
||||
abort();
|
||||
}
|
||||
ConvertUsesToScalar(GEP, NewAI, NewOffset);
|
||||
GEP->eraseFromParent();
|
||||
} else {
|
||||
assert(0 && "Unsupported operation!");
|
||||
abort();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user