mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 04:30:12 +00:00
Factor address mode matcher out of codegen prepare to make it available to other passes, e.g. loop strength reduction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@65134 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
3f315eb5e0
commit
a1fd5b386d
102
include/llvm/Transforms/Utils/AddrModeMatcher.h
Normal file
102
include/llvm/Transforms/Utils/AddrModeMatcher.h
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
//===- AddrModeMatcher.h - Addressing mode matching facility ----*- C++ -*-===//
|
||||||
|
//
|
||||||
|
// The LLVM Compiler Infrastructure
|
||||||
|
//
|
||||||
|
// This file is distributed under the University of Illinois Open Source
|
||||||
|
// License. See LICENSE.TXT for details.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// AddressingModeMatcher - This class exposes a single public method, which is
|
||||||
|
// used to construct a "maximal munch" of the addressing mode for the target
|
||||||
|
// specified by TLI for an access to "V" with an access type of AccessTy. This
|
||||||
|
// returns the addressing mode that is actually matched by value, but also
|
||||||
|
// returns the list of instructions involved in that addressing computation in
|
||||||
|
// AddrModeInsts.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#ifndef LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H
|
||||||
|
#define LLVM_TRANSFORMS_UTILS_ADDRMODEMATCHER_H
|
||||||
|
|
||||||
|
#include "llvm/ADT/SmallVector.h"
|
||||||
|
#include "llvm/Support/Streams.h"
|
||||||
|
#include "llvm/Target/TargetLowering.h"
|
||||||
|
|
||||||
|
namespace llvm {
|
||||||
|
|
||||||
|
class GlobalValue;
|
||||||
|
class Instruction;
|
||||||
|
class Value;
|
||||||
|
class Type;
|
||||||
|
class User;
|
||||||
|
|
||||||
|
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
|
||||||
|
/// which holds actual Value*'s for register values.
|
||||||
|
struct ExtAddrMode : public TargetLowering::AddrMode {
|
||||||
|
Value *BaseReg;
|
||||||
|
Value *ScaledReg;
|
||||||
|
ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
|
||||||
|
void print(OStream &OS) const;
|
||||||
|
void dump() const;
|
||||||
|
};
|
||||||
|
|
||||||
|
static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
|
||||||
|
AM.print(OS);
|
||||||
|
return OS;
|
||||||
|
}
|
||||||
|
|
||||||
|
class AddressingModeMatcher {
|
||||||
|
SmallVectorImpl<Instruction*> &AddrModeInsts;
|
||||||
|
const TargetLowering &TLI;
|
||||||
|
|
||||||
|
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
|
||||||
|
/// the memory instruction that we're computing this address for.
|
||||||
|
const Type *AccessTy;
|
||||||
|
Instruction *MemoryInst;
|
||||||
|
|
||||||
|
/// AddrMode - This is the addressing mode that we're building up. This is
|
||||||
|
/// part of the return value of this addressing mode matching stuff.
|
||||||
|
ExtAddrMode &AddrMode;
|
||||||
|
|
||||||
|
/// IgnoreProfitability - This is set to true when we should not do
|
||||||
|
/// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
|
||||||
|
/// always returns true.
|
||||||
|
bool IgnoreProfitability;
|
||||||
|
|
||||||
|
AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
|
||||||
|
const TargetLowering &T, const Type *AT,
|
||||||
|
Instruction *MI, ExtAddrMode &AM)
|
||||||
|
: AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
|
||||||
|
IgnoreProfitability = false;
|
||||||
|
}
|
||||||
|
public:
|
||||||
|
|
||||||
|
/// Match - Find the maximal addressing mode that a load/store of V can fold,
|
||||||
|
/// give an access type of AccessTy. This returns a list of involved
|
||||||
|
/// instructions in AddrModeInsts.
|
||||||
|
static ExtAddrMode Match(Value *V, const Type *AccessTy,
|
||||||
|
Instruction *MemoryInst,
|
||||||
|
SmallVectorImpl<Instruction*> &AddrModeInsts,
|
||||||
|
const TargetLowering &TLI) {
|
||||||
|
ExtAddrMode Result;
|
||||||
|
|
||||||
|
bool Success =
|
||||||
|
AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
|
||||||
|
MemoryInst, Result).MatchAddr(V, 0);
|
||||||
|
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||||
|
return Result;
|
||||||
|
}
|
||||||
|
private:
|
||||||
|
bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
|
||||||
|
bool MatchAddr(Value *V, unsigned Depth);
|
||||||
|
bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
|
||||||
|
bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
|
||||||
|
ExtAddrMode &AMBefore,
|
||||||
|
ExtAddrMode &AMAfter);
|
||||||
|
bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // End llvm namespace
|
||||||
|
|
||||||
|
#endif
|
@ -25,6 +25,7 @@
|
|||||||
#include "llvm/Target/TargetData.h"
|
#include "llvm/Target/TargetData.h"
|
||||||
#include "llvm/Target/TargetLowering.h"
|
#include "llvm/Target/TargetLowering.h"
|
||||||
#include "llvm/Target/TargetMachine.h"
|
#include "llvm/Target/TargetMachine.h"
|
||||||
|
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
|
||||||
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||||||
#include "llvm/Transforms/Utils/Local.h"
|
#include "llvm/Transforms/Utils/Local.h"
|
||||||
#include "llvm/ADT/DenseMap.h"
|
#include "llvm/ADT/DenseMap.h"
|
||||||
@ -552,649 +553,6 @@ static bool OptimizeCmpExpression(CmpInst *CI) {
|
|||||||
// Addressing Mode Analysis and Optimization
|
// Addressing Mode Analysis and Optimization
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
namespace {
|
|
||||||
/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
|
|
||||||
/// which holds actual Value*'s for register values.
|
|
||||||
struct ExtAddrMode : public TargetLowering::AddrMode {
|
|
||||||
Value *BaseReg;
|
|
||||||
Value *ScaledReg;
|
|
||||||
ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
|
|
||||||
void print(OStream &OS) const;
|
|
||||||
void dump() const {
|
|
||||||
print(cerr);
|
|
||||||
cerr << '\n';
|
|
||||||
}
|
|
||||||
};
|
|
||||||
} // end anonymous namespace
|
|
||||||
|
|
||||||
static inline OStream &operator<<(OStream &OS, const ExtAddrMode &AM) {
|
|
||||||
AM.print(OS);
|
|
||||||
return OS;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ExtAddrMode::print(OStream &OS) const {
|
|
||||||
bool NeedPlus = false;
|
|
||||||
OS << "[";
|
|
||||||
if (BaseGV) {
|
|
||||||
OS << (NeedPlus ? " + " : "")
|
|
||||||
<< "GV:";
|
|
||||||
WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false);
|
|
||||||
NeedPlus = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (BaseOffs)
|
|
||||||
OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
|
|
||||||
|
|
||||||
if (BaseReg) {
|
|
||||||
OS << (NeedPlus ? " + " : "")
|
|
||||||
<< "Base:";
|
|
||||||
WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false);
|
|
||||||
NeedPlus = true;
|
|
||||||
}
|
|
||||||
if (Scale) {
|
|
||||||
OS << (NeedPlus ? " + " : "")
|
|
||||||
<< Scale << "*";
|
|
||||||
WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false);
|
|
||||||
NeedPlus = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
OS << ']';
|
|
||||||
}
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
/// AddressingModeMatcher - This class exposes a single public method, which is
|
|
||||||
/// used to construct a "maximal munch" of the addressing mode for the target
|
|
||||||
/// specified by TLI for an access to "V" with an access type of AccessTy. This
|
|
||||||
/// returns the addressing mode that is actually matched by value, but also
|
|
||||||
/// returns the list of instructions involved in that addressing computation in
|
|
||||||
/// AddrModeInsts.
|
|
||||||
class AddressingModeMatcher {
|
|
||||||
SmallVectorImpl<Instruction*> &AddrModeInsts;
|
|
||||||
const TargetLowering &TLI;
|
|
||||||
|
|
||||||
/// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
|
|
||||||
/// the memory instruction that we're computing this address for.
|
|
||||||
const Type *AccessTy;
|
|
||||||
Instruction *MemoryInst;
|
|
||||||
|
|
||||||
/// AddrMode - This is the addressing mode that we're building up. This is
|
|
||||||
/// part of the return value of this addressing mode matching stuff.
|
|
||||||
ExtAddrMode &AddrMode;
|
|
||||||
|
|
||||||
/// IgnoreProfitability - This is set to true when we should not do
|
|
||||||
/// profitability checks. When true, IsProfitableToFoldIntoAddressingMode
|
|
||||||
/// always returns true.
|
|
||||||
bool IgnoreProfitability;
|
|
||||||
|
|
||||||
AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
|
|
||||||
const TargetLowering &T, const Type *AT,
|
|
||||||
Instruction *MI, ExtAddrMode &AM)
|
|
||||||
: AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
|
|
||||||
IgnoreProfitability = false;
|
|
||||||
}
|
|
||||||
public:
|
|
||||||
|
|
||||||
/// Match - Find the maximal addressing mode that a load/store of V can fold,
|
|
||||||
/// give an access type of AccessTy. This returns a list of involved
|
|
||||||
/// instructions in AddrModeInsts.
|
|
||||||
static ExtAddrMode Match(Value *V, const Type *AccessTy,
|
|
||||||
Instruction *MemoryInst,
|
|
||||||
SmallVectorImpl<Instruction*> &AddrModeInsts,
|
|
||||||
const TargetLowering &TLI) {
|
|
||||||
ExtAddrMode Result;
|
|
||||||
|
|
||||||
bool Success =
|
|
||||||
AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
|
|
||||||
MemoryInst, Result).MatchAddr(V, 0);
|
|
||||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
|
||||||
return Result;
|
|
||||||
}
|
|
||||||
private:
|
|
||||||
bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
|
|
||||||
bool MatchAddr(Value *V, unsigned Depth);
|
|
||||||
bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
|
|
||||||
bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
|
|
||||||
ExtAddrMode &AMBefore,
|
|
||||||
ExtAddrMode &AMAfter);
|
|
||||||
bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
|
|
||||||
};
|
|
||||||
} // end anonymous namespace
|
|
||||||
|
|
||||||
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
|
|
||||||
/// Return true and update AddrMode if this addr mode is legal for the target,
|
|
||||||
/// false if not.
|
|
||||||
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
|
|
||||||
unsigned Depth) {
|
|
||||||
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
|
|
||||||
// mode. Just process that directly.
|
|
||||||
if (Scale == 1)
|
|
||||||
return MatchAddr(ScaleReg, Depth);
|
|
||||||
|
|
||||||
// If the scale is 0, it takes nothing to add this.
|
|
||||||
if (Scale == 0)
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// If we already have a scale of this value, we can add to it, otherwise, we
|
|
||||||
// need an available scale field.
|
|
||||||
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
ExtAddrMode TestAddrMode = AddrMode;
|
|
||||||
|
|
||||||
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
|
|
||||||
// [A+B + A*7] -> [B+A*8].
|
|
||||||
TestAddrMode.Scale += Scale;
|
|
||||||
TestAddrMode.ScaledReg = ScaleReg;
|
|
||||||
|
|
||||||
// If the new address isn't legal, bail out.
|
|
||||||
if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
// It was legal, so commit it.
|
|
||||||
AddrMode = TestAddrMode;
|
|
||||||
|
|
||||||
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
|
|
||||||
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
|
|
||||||
// X*Scale + C*Scale to addr mode.
|
|
||||||
ConstantInt *CI; Value *AddLHS;
|
|
||||||
if (isa<Instruction>(ScaleReg) && // not a constant expr.
|
|
||||||
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
|
|
||||||
TestAddrMode.ScaledReg = AddLHS;
|
|
||||||
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
|
|
||||||
|
|
||||||
// If this addressing mode is legal, commit it and remember that we folded
|
|
||||||
// this instruction.
|
|
||||||
if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
|
|
||||||
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
|
|
||||||
AddrMode = TestAddrMode;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Otherwise, not (x+c)*scale, just return what we have.
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// MightBeFoldableInst - This is a little filter, which returns true if an
|
|
||||||
/// addressing computation involving I might be folded into a load/store
|
|
||||||
/// accessing it. This doesn't need to be perfect, but needs to accept at least
|
|
||||||
/// the set of instructions that MatchOperationAddr can.
|
|
||||||
static bool MightBeFoldableInst(Instruction *I) {
|
|
||||||
switch (I->getOpcode()) {
|
|
||||||
case Instruction::BitCast:
|
|
||||||
// Don't touch identity bitcasts.
|
|
||||||
if (I->getType() == I->getOperand(0)->getType())
|
|
||||||
return false;
|
|
||||||
return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
|
|
||||||
case Instruction::PtrToInt:
|
|
||||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
|
||||||
return true;
|
|
||||||
case Instruction::IntToPtr:
|
|
||||||
// We know the input is intptr_t, so this is foldable.
|
|
||||||
return true;
|
|
||||||
case Instruction::Add:
|
|
||||||
return true;
|
|
||||||
case Instruction::Mul:
|
|
||||||
case Instruction::Shl:
|
|
||||||
// Can only handle X*C and X << C.
|
|
||||||
return isa<ConstantInt>(I->getOperand(1));
|
|
||||||
case Instruction::GetElementPtr:
|
|
||||||
return true;
|
|
||||||
default:
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
|
|
||||||
/// fold the operation into the addressing mode. If so, update the addressing
|
|
||||||
/// mode and return true, otherwise return false without modifying AddrMode.
|
|
||||||
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
|
|
||||||
unsigned Depth) {
|
|
||||||
// Avoid exponential behavior on extremely deep expression trees.
|
|
||||||
if (Depth >= 5) return false;
|
|
||||||
|
|
||||||
switch (Opcode) {
|
|
||||||
case Instruction::PtrToInt:
|
|
||||||
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
|
||||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
|
||||||
case Instruction::IntToPtr:
|
|
||||||
// This inttoptr is a no-op if the integer type is pointer sized.
|
|
||||||
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
|
|
||||||
TLI.getPointerTy())
|
|
||||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
|
||||||
return false;
|
|
||||||
case Instruction::BitCast:
|
|
||||||
// BitCast is always a noop, and we can handle it as long as it is
|
|
||||||
// int->int or pointer->pointer (we don't want int<->fp or something).
|
|
||||||
if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
|
|
||||||
isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
|
|
||||||
// Don't touch identity bitcasts. These were probably put here by LSR,
|
|
||||||
// and we don't want to mess around with them. Assume it knows what it
|
|
||||||
// is doing.
|
|
||||||
AddrInst->getOperand(0)->getType() != AddrInst->getType())
|
|
||||||
return MatchAddr(AddrInst->getOperand(0), Depth);
|
|
||||||
return false;
|
|
||||||
case Instruction::Add: {
|
|
||||||
// Check to see if we can merge in the RHS then the LHS. If so, we win.
|
|
||||||
ExtAddrMode BackupAddrMode = AddrMode;
|
|
||||||
unsigned OldSize = AddrModeInsts.size();
|
|
||||||
if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
|
|
||||||
MatchAddr(AddrInst->getOperand(0), Depth+1))
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// Restore the old addr mode info.
|
|
||||||
AddrMode = BackupAddrMode;
|
|
||||||
AddrModeInsts.resize(OldSize);
|
|
||||||
|
|
||||||
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
|
|
||||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
|
|
||||||
MatchAddr(AddrInst->getOperand(1), Depth+1))
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// Otherwise we definitely can't merge the ADD in.
|
|
||||||
AddrMode = BackupAddrMode;
|
|
||||||
AddrModeInsts.resize(OldSize);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
//case Instruction::Or:
|
|
||||||
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
|
|
||||||
//break;
|
|
||||||
case Instruction::Mul:
|
|
||||||
case Instruction::Shl: {
|
|
||||||
// Can only handle X*C and X << C.
|
|
||||||
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
|
||||||
if (!RHS) return false;
|
|
||||||
int64_t Scale = RHS->getSExtValue();
|
|
||||||
if (Opcode == Instruction::Shl)
|
|
||||||
Scale = 1 << Scale;
|
|
||||||
|
|
||||||
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
|
|
||||||
}
|
|
||||||
case Instruction::GetElementPtr: {
|
|
||||||
// Scan the GEP. We check it if it contains constant offsets and at most
|
|
||||||
// one variable offset.
|
|
||||||
int VariableOperand = -1;
|
|
||||||
unsigned VariableScale = 0;
|
|
||||||
|
|
||||||
int64_t ConstantOffset = 0;
|
|
||||||
const TargetData *TD = TLI.getTargetData();
|
|
||||||
gep_type_iterator GTI = gep_type_begin(AddrInst);
|
|
||||||
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
|
|
||||||
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
||||||
const StructLayout *SL = TD->getStructLayout(STy);
|
|
||||||
unsigned Idx =
|
|
||||||
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
|
|
||||||
ConstantOffset += SL->getElementOffset(Idx);
|
|
||||||
} else {
|
|
||||||
uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
|
|
||||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
|
|
||||||
ConstantOffset += CI->getSExtValue()*TypeSize;
|
|
||||||
} else if (TypeSize) { // Scales of zero don't do anything.
|
|
||||||
// We only allow one variable index at the moment.
|
|
||||||
if (VariableOperand != -1)
|
|
||||||
return false;
|
|
||||||
|
|
||||||
// Remember the variable index.
|
|
||||||
VariableOperand = i;
|
|
||||||
VariableScale = TypeSize;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// A common case is for the GEP to only do a constant offset. In this case,
|
|
||||||
// just add it to the disp field and check validity.
|
|
||||||
if (VariableOperand == -1) {
|
|
||||||
AddrMode.BaseOffs += ConstantOffset;
|
|
||||||
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
|
|
||||||
// Check to see if we can fold the base pointer in too.
|
|
||||||
if (MatchAddr(AddrInst->getOperand(0), Depth+1))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
AddrMode.BaseOffs -= ConstantOffset;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Save the valid addressing mode in case we can't match.
|
|
||||||
ExtAddrMode BackupAddrMode = AddrMode;
|
|
||||||
|
|
||||||
// Check that this has no base reg yet. If so, we won't have a place to
|
|
||||||
// put the base of the GEP (assuming it is not a null ptr).
|
|
||||||
bool SetBaseReg = true;
|
|
||||||
if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
|
|
||||||
SetBaseReg = false; // null pointer base doesn't need representation.
|
|
||||||
else if (AddrMode.HasBaseReg)
|
|
||||||
return false; // Base register already specified, can't match GEP.
|
|
||||||
else {
|
|
||||||
// Otherwise, we'll use the GEP base as the BaseReg.
|
|
||||||
AddrMode.HasBaseReg = true;
|
|
||||||
AddrMode.BaseReg = AddrInst->getOperand(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
// See if the scale and offset amount is valid for this target.
|
|
||||||
AddrMode.BaseOffs += ConstantOffset;
|
|
||||||
|
|
||||||
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
|
|
||||||
Depth)) {
|
|
||||||
AddrMode = BackupAddrMode;
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If we have a null as the base of the GEP, folding in the constant offset
|
|
||||||
// plus variable scale is all we can do.
|
|
||||||
if (!SetBaseReg) return true;
|
|
||||||
|
|
||||||
// If this match succeeded, we know that we can form an address with the
|
|
||||||
// GepBase as the basereg. Match the base pointer of the GEP more
|
|
||||||
// aggressively by zeroing out BaseReg and rematching. If the base is
|
|
||||||
// (for example) another GEP, this allows merging in that other GEP into
|
|
||||||
// the addressing mode we're forming.
|
|
||||||
AddrMode.HasBaseReg = false;
|
|
||||||
AddrMode.BaseReg = 0;
|
|
||||||
bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
|
|
||||||
assert(Success && "MatchAddr should be able to fill in BaseReg!");
|
|
||||||
Success=Success;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
|
|
||||||
/// addressing mode. If Addr can't be added to AddrMode this returns false and
|
|
||||||
/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
|
|
||||||
/// or intptr_t for the target.
|
|
||||||
///
|
|
||||||
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
|
|
||||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
|
|
||||||
// Fold in immediates if legal for the target.
|
|
||||||
AddrMode.BaseOffs += CI->getSExtValue();
|
|
||||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
||||||
return true;
|
|
||||||
AddrMode.BaseOffs -= CI->getSExtValue();
|
|
||||||
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
|
|
||||||
// If this is a global variable, try to fold it into the addressing mode.
|
|
||||||
if (AddrMode.BaseGV == 0) {
|
|
||||||
AddrMode.BaseGV = GV;
|
|
||||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
||||||
return true;
|
|
||||||
AddrMode.BaseGV = 0;
|
|
||||||
}
|
|
||||||
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
|
|
||||||
ExtAddrMode BackupAddrMode = AddrMode;
|
|
||||||
unsigned OldSize = AddrModeInsts.size();
|
|
||||||
|
|
||||||
// Check to see if it is possible to fold this operation.
|
|
||||||
if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
|
|
||||||
// Okay, it's possible to fold this. Check to see if it is actually
|
|
||||||
// *profitable* to do so. We use a simple cost model to avoid increasing
|
|
||||||
// register pressure too much.
|
|
||||||
if (I->hasOneUse() ||
|
|
||||||
IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
|
|
||||||
AddrModeInsts.push_back(I);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// It isn't profitable to do this, roll back.
|
|
||||||
//cerr << "NOT FOLDING: " << *I;
|
|
||||||
AddrMode = BackupAddrMode;
|
|
||||||
AddrModeInsts.resize(OldSize);
|
|
||||||
}
|
|
||||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
|
||||||
if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
|
|
||||||
return true;
|
|
||||||
} else if (isa<ConstantPointerNull>(Addr)) {
|
|
||||||
// Null pointer gets folded without affecting the addressing mode.
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Worse case, the target should support [reg] addressing modes. :)
|
|
||||||
if (!AddrMode.HasBaseReg) {
|
|
||||||
AddrMode.HasBaseReg = true;
|
|
||||||
AddrMode.BaseReg = Addr;
|
|
||||||
// Still check for legality in case the target supports [imm] but not [i+r].
|
|
||||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
||||||
return true;
|
|
||||||
AddrMode.HasBaseReg = false;
|
|
||||||
AddrMode.BaseReg = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the base register is already taken, see if we can do [r+r].
|
|
||||||
if (AddrMode.Scale == 0) {
|
|
||||||
AddrMode.Scale = 1;
|
|
||||||
AddrMode.ScaledReg = Addr;
|
|
||||||
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
|
||||||
return true;
|
|
||||||
AddrMode.Scale = 0;
|
|
||||||
AddrMode.ScaledReg = 0;
|
|
||||||
}
|
|
||||||
// Couldn't match.
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
|
|
||||||
/// inline asm call are due to memory operands. If so, return true, otherwise
|
|
||||||
/// return false.
|
|
||||||
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
|
|
||||||
const TargetLowering &TLI) {
|
|
||||||
std::vector<InlineAsm::ConstraintInfo>
|
|
||||||
Constraints = IA->ParseConstraints();
|
|
||||||
|
|
||||||
unsigned ArgNo = 1; // ArgNo - The operand of the CallInst.
|
|
||||||
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
|
||||||
TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
|
|
||||||
|
|
||||||
// Compute the value type for each operand.
|
|
||||||
switch (OpInfo.Type) {
|
|
||||||
case InlineAsm::isOutput:
|
|
||||||
if (OpInfo.isIndirect)
|
|
||||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
|
||||||
break;
|
|
||||||
case InlineAsm::isInput:
|
|
||||||
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
|
||||||
break;
|
|
||||||
case InlineAsm::isClobber:
|
|
||||||
// Nothing to do.
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Compute the constraint code and ConstraintType to use.
|
|
||||||
TLI.ComputeConstraintToUse(OpInfo, SDValue(),
|
|
||||||
OpInfo.ConstraintType == TargetLowering::C_Memory);
|
|
||||||
|
|
||||||
// If this asm operand is our Value*, and if it isn't an indirect memory
|
|
||||||
// operand, we can't fold it!
|
|
||||||
if (OpInfo.CallOperandVal == OpVal &&
|
|
||||||
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
|
|
||||||
!OpInfo.isIndirect))
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
|
|
||||||
/// memory use. If we find an obviously non-foldable instruction, return true.
|
|
||||||
/// Add the ultimately found memory instructions to MemoryUses.
|
|
||||||
static bool FindAllMemoryUses(Instruction *I,
|
|
||||||
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
|
|
||||||
SmallPtrSet<Instruction*, 16> &ConsideredInsts,
|
|
||||||
const TargetLowering &TLI) {
|
|
||||||
// If we already considered this instruction, we're done.
|
|
||||||
if (!ConsideredInsts.insert(I))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
// If this is an obviously unfoldable instruction, bail out.
|
|
||||||
if (!MightBeFoldableInst(I))
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// Loop over all the uses, recursively processing them.
|
|
||||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
||||||
UI != E; ++UI) {
|
|
||||||
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
|
||||||
MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
|
||||||
if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
|
|
||||||
MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
|
||||||
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
|
|
||||||
if (IA == 0) return true;
|
|
||||||
|
|
||||||
// If this is a memory operand, we're cool, otherwise bail out.
|
|
||||||
if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
|
|
||||||
return true;
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
|
|
||||||
TLI))
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
|
|
||||||
/// the use site that we're folding it into. If so, there is no cost to
|
|
||||||
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
|
|
||||||
/// that we know are live at the instruction already.
|
|
||||||
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
|
|
||||||
Value *KnownLive2) {
|
|
||||||
// If Val is either of the known-live values, we know it is live!
|
|
||||||
if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// All values other than instructions and arguments (e.g. constants) are live.
|
|
||||||
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
|
|
||||||
|
|
||||||
// If Val is a constant sized alloca in the entry block, it is live, this is
|
|
||||||
// true because it is just a reference to the stack/frame pointer, which is
|
|
||||||
// live for the whole function.
|
|
||||||
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
|
|
||||||
if (AI->isStaticAlloca())
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// Check to see if this value is already used in the memory instruction's
|
|
||||||
// block. If so, it's already live into the block at the very least, so we
|
|
||||||
// can reasonably fold it.
|
|
||||||
BasicBlock *MemBB = MemoryInst->getParent();
|
|
||||||
for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
|
|
||||||
UI != E; ++UI)
|
|
||||||
// We know that uses of arguments and instructions have to be instructions.
|
|
||||||
if (cast<Instruction>(*UI)->getParent() == MemBB)
|
|
||||||
return true;
|
|
||||||
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
|
|
||||||
/// mode of the machine to fold the specified instruction into a load or store
|
|
||||||
/// that ultimately uses it. However, the specified instruction has multiple
|
|
||||||
/// uses. Given this, it may actually increase register pressure to fold it
|
|
||||||
/// into the load. For example, consider this code:
|
|
||||||
///
|
|
||||||
/// X = ...
|
|
||||||
/// Y = X+1
|
|
||||||
/// use(Y) -> nonload/store
|
|
||||||
/// Z = Y+1
|
|
||||||
/// load Z
|
|
||||||
///
|
|
||||||
/// In this case, Y has multiple uses, and can be folded into the load of Z
|
|
||||||
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
|
|
||||||
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
|
|
||||||
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
|
|
||||||
/// number of computations either.
|
|
||||||
///
|
|
||||||
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
|
|
||||||
/// X was live across 'load Z' for other reasons, we actually *would* want to
|
|
||||||
/// fold the addressing mode in the Z case. This would make Y die earlier.
|
|
||||||
bool AddressingModeMatcher::
|
|
||||||
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
|
|
||||||
ExtAddrMode &AMAfter) {
|
|
||||||
if (IgnoreProfitability) return true;
|
|
||||||
|
|
||||||
// AMBefore is the addressing mode before this instruction was folded into it,
|
|
||||||
// and AMAfter is the addressing mode after the instruction was folded. Get
|
|
||||||
// the set of registers referenced by AMAfter and subtract out those
|
|
||||||
// referenced by AMBefore: this is the set of values which folding in this
|
|
||||||
// address extends the lifetime of.
|
|
||||||
//
|
|
||||||
// Note that there are only two potential values being referenced here,
|
|
||||||
// BaseReg and ScaleReg (global addresses are always available, as are any
|
|
||||||
// folded immediates).
|
|
||||||
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
|
|
||||||
|
|
||||||
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
|
|
||||||
// lifetime wasn't extended by adding this instruction.
|
|
||||||
if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
|
||||||
BaseReg = 0;
|
|
||||||
if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
|
||||||
ScaledReg = 0;
|
|
||||||
|
|
||||||
// If folding this instruction (and it's subexprs) didn't extend any live
|
|
||||||
// ranges, we're ok with it.
|
|
||||||
if (BaseReg == 0 && ScaledReg == 0)
|
|
||||||
return true;
|
|
||||||
|
|
||||||
// If all uses of this instruction are ultimately load/store/inlineasm's,
|
|
||||||
// check to see if their addressing modes will include this instruction. If
|
|
||||||
// so, we can fold it into all uses, so it doesn't matter if it has multiple
|
|
||||||
// uses.
|
|
||||||
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
|
|
||||||
SmallPtrSet<Instruction*, 16> ConsideredInsts;
|
|
||||||
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
|
|
||||||
return false; // Has a non-memory, non-foldable use!
|
|
||||||
|
|
||||||
// Now that we know that all uses of this instruction are part of a chain of
|
|
||||||
// computation involving only operations that could theoretically be folded
|
|
||||||
// into a memory use, loop over each of these uses and see if they could
|
|
||||||
// *actually* fold the instruction.
|
|
||||||
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
|
|
||||||
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
|
|
||||||
Instruction *User = MemoryUses[i].first;
|
|
||||||
unsigned OpNo = MemoryUses[i].second;
|
|
||||||
|
|
||||||
// Get the access type of this use. If the use isn't a pointer, we don't
|
|
||||||
// know what it accesses.
|
|
||||||
Value *Address = User->getOperand(OpNo);
|
|
||||||
if (!isa<PointerType>(Address->getType()))
|
|
||||||
return false;
|
|
||||||
const Type *AddressAccessTy =
|
|
||||||
cast<PointerType>(Address->getType())->getElementType();
|
|
||||||
|
|
||||||
// Do a match against the root of this address, ignoring profitability. This
|
|
||||||
// will tell us if the addressing mode for the memory operation will
|
|
||||||
// *actually* cover the shared instruction.
|
|
||||||
ExtAddrMode Result;
|
|
||||||
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
|
|
||||||
MemoryInst, Result);
|
|
||||||
Matcher.IgnoreProfitability = true;
|
|
||||||
bool Success = Matcher.MatchAddr(Address, 0);
|
|
||||||
Success = Success; assert(Success && "Couldn't select *anything*?");
|
|
||||||
|
|
||||||
// If the match didn't cover I, then it won't be shared by it.
|
|
||||||
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
|
|
||||||
I) == MatchedAddrModeInsts.end())
|
|
||||||
return false;
|
|
||||||
|
|
||||||
MatchedAddrModeInsts.clear();
|
|
||||||
}
|
|
||||||
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
// Memory Optimization
|
// Memory Optimization
|
||||||
//===----------------------------------------------------------------------===//
|
//===----------------------------------------------------------------------===//
|
||||||
|
593
lib/Transforms/Utils/AddrModeMatcher.cpp
Normal file
593
lib/Transforms/Utils/AddrModeMatcher.cpp
Normal file
@ -0,0 +1,593 @@
|
|||||||
|
//===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
|
||||||
|
//
|
||||||
|
// The LLVM Compiler Infrastructure
|
||||||
|
//
|
||||||
|
// This file is distributed under the University of Illinois Open Source
|
||||||
|
// License. See LICENSE.TXT for details.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
//
|
||||||
|
// This file implements target addressing mode matcher class.
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
|
||||||
|
#include "llvm/DerivedTypes.h"
|
||||||
|
#include "llvm/GlobalValue.h"
|
||||||
|
#include "llvm/Instruction.h"
|
||||||
|
#include "llvm/Assembly/Writer.h"
|
||||||
|
#include "llvm/Target/TargetData.h"
|
||||||
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
||||||
|
#include "llvm/Support/PatternMatch.h"
|
||||||
|
|
||||||
|
using namespace llvm;
|
||||||
|
using namespace llvm::PatternMatch;
|
||||||
|
|
||||||
|
void ExtAddrMode::print(OStream &OS) const {
|
||||||
|
bool NeedPlus = false;
|
||||||
|
OS << "[";
|
||||||
|
if (BaseGV) {
|
||||||
|
OS << (NeedPlus ? " + " : "")
|
||||||
|
<< "GV:";
|
||||||
|
WriteAsOperand(*OS.stream(), BaseGV, /*PrintType=*/false);
|
||||||
|
NeedPlus = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (BaseOffs)
|
||||||
|
OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
|
||||||
|
|
||||||
|
if (BaseReg) {
|
||||||
|
OS << (NeedPlus ? " + " : "")
|
||||||
|
<< "Base:";
|
||||||
|
WriteAsOperand(*OS.stream(), BaseReg, /*PrintType=*/false);
|
||||||
|
NeedPlus = true;
|
||||||
|
}
|
||||||
|
if (Scale) {
|
||||||
|
OS << (NeedPlus ? " + " : "")
|
||||||
|
<< Scale << "*";
|
||||||
|
WriteAsOperand(*OS.stream(), ScaledReg, /*PrintType=*/false);
|
||||||
|
NeedPlus = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
OS << ']';
|
||||||
|
}
|
||||||
|
|
||||||
|
void ExtAddrMode::dump() const {
|
||||||
|
print(cerr);
|
||||||
|
cerr << '\n';
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
|
||||||
|
/// Return true and update AddrMode if this addr mode is legal for the target,
|
||||||
|
/// false if not.
|
||||||
|
bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
|
||||||
|
unsigned Depth) {
|
||||||
|
// If Scale is 1, then this is the same as adding ScaleReg to the addressing
|
||||||
|
// mode. Just process that directly.
|
||||||
|
if (Scale == 1)
|
||||||
|
return MatchAddr(ScaleReg, Depth);
|
||||||
|
|
||||||
|
// If the scale is 0, it takes nothing to add this.
|
||||||
|
if (Scale == 0)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// If we already have a scale of this value, we can add to it, otherwise, we
|
||||||
|
// need an available scale field.
|
||||||
|
if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
ExtAddrMode TestAddrMode = AddrMode;
|
||||||
|
|
||||||
|
// Add scale to turn X*4+X*3 -> X*7. This could also do things like
|
||||||
|
// [A+B + A*7] -> [B+A*8].
|
||||||
|
TestAddrMode.Scale += Scale;
|
||||||
|
TestAddrMode.ScaledReg = ScaleReg;
|
||||||
|
|
||||||
|
// If the new address isn't legal, bail out.
|
||||||
|
if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// It was legal, so commit it.
|
||||||
|
AddrMode = TestAddrMode;
|
||||||
|
|
||||||
|
// Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
|
||||||
|
// to see if ScaleReg is actually X+C. If so, we can turn this into adding
|
||||||
|
// X*Scale + C*Scale to addr mode.
|
||||||
|
ConstantInt *CI; Value *AddLHS;
|
||||||
|
if (isa<Instruction>(ScaleReg) && // not a constant expr.
|
||||||
|
match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
|
||||||
|
TestAddrMode.ScaledReg = AddLHS;
|
||||||
|
TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
|
||||||
|
|
||||||
|
// If this addressing mode is legal, commit it and remember that we folded
|
||||||
|
// this instruction.
|
||||||
|
if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
|
||||||
|
AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
|
||||||
|
AddrMode = TestAddrMode;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Otherwise, not (x+c)*scale, just return what we have.
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// MightBeFoldableInst - This is a little filter, which returns true if an
|
||||||
|
/// addressing computation involving I might be folded into a load/store
|
||||||
|
/// accessing it. This doesn't need to be perfect, but needs to accept at least
|
||||||
|
/// the set of instructions that MatchOperationAddr can.
|
||||||
|
static bool MightBeFoldableInst(Instruction *I) {
|
||||||
|
switch (I->getOpcode()) {
|
||||||
|
case Instruction::BitCast:
|
||||||
|
// Don't touch identity bitcasts.
|
||||||
|
if (I->getType() == I->getOperand(0)->getType())
|
||||||
|
return false;
|
||||||
|
return isa<PointerType>(I->getType()) || isa<IntegerType>(I->getType());
|
||||||
|
case Instruction::PtrToInt:
|
||||||
|
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||||
|
return true;
|
||||||
|
case Instruction::IntToPtr:
|
||||||
|
// We know the input is intptr_t, so this is foldable.
|
||||||
|
return true;
|
||||||
|
case Instruction::Add:
|
||||||
|
return true;
|
||||||
|
case Instruction::Mul:
|
||||||
|
case Instruction::Shl:
|
||||||
|
// Can only handle X*C and X << C.
|
||||||
|
return isa<ConstantInt>(I->getOperand(1));
|
||||||
|
case Instruction::GetElementPtr:
|
||||||
|
return true;
|
||||||
|
default:
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// MatchOperationAddr - Given an instruction or constant expr, see if we can
|
||||||
|
/// fold the operation into the addressing mode. If so, update the addressing
|
||||||
|
/// mode and return true, otherwise return false without modifying AddrMode.
|
||||||
|
bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
|
||||||
|
unsigned Depth) {
|
||||||
|
// Avoid exponential behavior on extremely deep expression trees.
|
||||||
|
if (Depth >= 5) return false;
|
||||||
|
|
||||||
|
switch (Opcode) {
|
||||||
|
case Instruction::PtrToInt:
|
||||||
|
// PtrToInt is always a noop, as we know that the int type is pointer sized.
|
||||||
|
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||||
|
case Instruction::IntToPtr:
|
||||||
|
// This inttoptr is a no-op if the integer type is pointer sized.
|
||||||
|
if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
|
||||||
|
TLI.getPointerTy())
|
||||||
|
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||||
|
return false;
|
||||||
|
case Instruction::BitCast:
|
||||||
|
// BitCast is always a noop, and we can handle it as long as it is
|
||||||
|
// int->int or pointer->pointer (we don't want int<->fp or something).
|
||||||
|
if ((isa<PointerType>(AddrInst->getOperand(0)->getType()) ||
|
||||||
|
isa<IntegerType>(AddrInst->getOperand(0)->getType())) &&
|
||||||
|
// Don't touch identity bitcasts. These were probably put here by LSR,
|
||||||
|
// and we don't want to mess around with them. Assume it knows what it
|
||||||
|
// is doing.
|
||||||
|
AddrInst->getOperand(0)->getType() != AddrInst->getType())
|
||||||
|
return MatchAddr(AddrInst->getOperand(0), Depth);
|
||||||
|
return false;
|
||||||
|
case Instruction::Add: {
|
||||||
|
// Check to see if we can merge in the RHS then the LHS. If so, we win.
|
||||||
|
ExtAddrMode BackupAddrMode = AddrMode;
|
||||||
|
unsigned OldSize = AddrModeInsts.size();
|
||||||
|
if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
|
||||||
|
MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// Restore the old addr mode info.
|
||||||
|
AddrMode = BackupAddrMode;
|
||||||
|
AddrModeInsts.resize(OldSize);
|
||||||
|
|
||||||
|
// Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
|
||||||
|
if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
|
||||||
|
MatchAddr(AddrInst->getOperand(1), Depth+1))
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// Otherwise we definitely can't merge the ADD in.
|
||||||
|
AddrMode = BackupAddrMode;
|
||||||
|
AddrModeInsts.resize(OldSize);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
//case Instruction::Or:
|
||||||
|
// TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
|
||||||
|
//break;
|
||||||
|
case Instruction::Mul:
|
||||||
|
case Instruction::Shl: {
|
||||||
|
// Can only handle X*C and X << C.
|
||||||
|
ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
|
||||||
|
if (!RHS) return false;
|
||||||
|
int64_t Scale = RHS->getSExtValue();
|
||||||
|
if (Opcode == Instruction::Shl)
|
||||||
|
Scale = 1 << Scale;
|
||||||
|
|
||||||
|
return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
|
||||||
|
}
|
||||||
|
case Instruction::GetElementPtr: {
|
||||||
|
// Scan the GEP. We check it if it contains constant offsets and at most
|
||||||
|
// one variable offset.
|
||||||
|
int VariableOperand = -1;
|
||||||
|
unsigned VariableScale = 0;
|
||||||
|
|
||||||
|
int64_t ConstantOffset = 0;
|
||||||
|
const TargetData *TD = TLI.getTargetData();
|
||||||
|
gep_type_iterator GTI = gep_type_begin(AddrInst);
|
||||||
|
for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
|
||||||
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
||||||
|
const StructLayout *SL = TD->getStructLayout(STy);
|
||||||
|
unsigned Idx =
|
||||||
|
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
|
||||||
|
ConstantOffset += SL->getElementOffset(Idx);
|
||||||
|
} else {
|
||||||
|
uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
|
||||||
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
|
||||||
|
ConstantOffset += CI->getSExtValue()*TypeSize;
|
||||||
|
} else if (TypeSize) { // Scales of zero don't do anything.
|
||||||
|
// We only allow one variable index at the moment.
|
||||||
|
if (VariableOperand != -1)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// Remember the variable index.
|
||||||
|
VariableOperand = i;
|
||||||
|
VariableScale = TypeSize;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A common case is for the GEP to only do a constant offset. In this case,
|
||||||
|
// just add it to the disp field and check validity.
|
||||||
|
if (VariableOperand == -1) {
|
||||||
|
AddrMode.BaseOffs += ConstantOffset;
|
||||||
|
if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
|
||||||
|
// Check to see if we can fold the base pointer in too.
|
||||||
|
if (MatchAddr(AddrInst->getOperand(0), Depth+1))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
AddrMode.BaseOffs -= ConstantOffset;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Save the valid addressing mode in case we can't match.
|
||||||
|
ExtAddrMode BackupAddrMode = AddrMode;
|
||||||
|
|
||||||
|
// Check that this has no base reg yet. If so, we won't have a place to
|
||||||
|
// put the base of the GEP (assuming it is not a null ptr).
|
||||||
|
bool SetBaseReg = true;
|
||||||
|
if (isa<ConstantPointerNull>(AddrInst->getOperand(0)))
|
||||||
|
SetBaseReg = false; // null pointer base doesn't need representation.
|
||||||
|
else if (AddrMode.HasBaseReg)
|
||||||
|
return false; // Base register already specified, can't match GEP.
|
||||||
|
else {
|
||||||
|
// Otherwise, we'll use the GEP base as the BaseReg.
|
||||||
|
AddrMode.HasBaseReg = true;
|
||||||
|
AddrMode.BaseReg = AddrInst->getOperand(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// See if the scale and offset amount is valid for this target.
|
||||||
|
AddrMode.BaseOffs += ConstantOffset;
|
||||||
|
|
||||||
|
if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
|
||||||
|
Depth)) {
|
||||||
|
AddrMode = BackupAddrMode;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If we have a null as the base of the GEP, folding in the constant offset
|
||||||
|
// plus variable scale is all we can do.
|
||||||
|
if (!SetBaseReg) return true;
|
||||||
|
|
||||||
|
// If this match succeeded, we know that we can form an address with the
|
||||||
|
// GepBase as the basereg. Match the base pointer of the GEP more
|
||||||
|
// aggressively by zeroing out BaseReg and rematching. If the base is
|
||||||
|
// (for example) another GEP, this allows merging in that other GEP into
|
||||||
|
// the addressing mode we're forming.
|
||||||
|
AddrMode.HasBaseReg = false;
|
||||||
|
AddrMode.BaseReg = 0;
|
||||||
|
bool Success = MatchAddr(AddrInst->getOperand(0), Depth+1);
|
||||||
|
assert(Success && "MatchAddr should be able to fill in BaseReg!");
|
||||||
|
Success=Success;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// MatchAddr - If we can, try to add the value of 'Addr' into the current
|
||||||
|
/// addressing mode. If Addr can't be added to AddrMode this returns false and
|
||||||
|
/// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
|
||||||
|
/// or intptr_t for the target.
|
||||||
|
///
|
||||||
|
bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
|
||||||
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
|
||||||
|
// Fold in immediates if legal for the target.
|
||||||
|
AddrMode.BaseOffs += CI->getSExtValue();
|
||||||
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||||
|
return true;
|
||||||
|
AddrMode.BaseOffs -= CI->getSExtValue();
|
||||||
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
|
||||||
|
// If this is a global variable, try to fold it into the addressing mode.
|
||||||
|
if (AddrMode.BaseGV == 0) {
|
||||||
|
AddrMode.BaseGV = GV;
|
||||||
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||||
|
return true;
|
||||||
|
AddrMode.BaseGV = 0;
|
||||||
|
}
|
||||||
|
} else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
|
||||||
|
ExtAddrMode BackupAddrMode = AddrMode;
|
||||||
|
unsigned OldSize = AddrModeInsts.size();
|
||||||
|
|
||||||
|
// Check to see if it is possible to fold this operation.
|
||||||
|
if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
|
||||||
|
// Okay, it's possible to fold this. Check to see if it is actually
|
||||||
|
// *profitable* to do so. We use a simple cost model to avoid increasing
|
||||||
|
// register pressure too much.
|
||||||
|
if (I->hasOneUse() ||
|
||||||
|
IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
|
||||||
|
AddrModeInsts.push_back(I);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// It isn't profitable to do this, roll back.
|
||||||
|
//cerr << "NOT FOLDING: " << *I;
|
||||||
|
AddrMode = BackupAddrMode;
|
||||||
|
AddrModeInsts.resize(OldSize);
|
||||||
|
}
|
||||||
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
||||||
|
if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
|
||||||
|
return true;
|
||||||
|
} else if (isa<ConstantPointerNull>(Addr)) {
|
||||||
|
// Null pointer gets folded without affecting the addressing mode.
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Worse case, the target should support [reg] addressing modes. :)
|
||||||
|
if (!AddrMode.HasBaseReg) {
|
||||||
|
AddrMode.HasBaseReg = true;
|
||||||
|
AddrMode.BaseReg = Addr;
|
||||||
|
// Still check for legality in case the target supports [imm] but not [i+r].
|
||||||
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||||
|
return true;
|
||||||
|
AddrMode.HasBaseReg = false;
|
||||||
|
AddrMode.BaseReg = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the base register is already taken, see if we can do [r+r].
|
||||||
|
if (AddrMode.Scale == 0) {
|
||||||
|
AddrMode.Scale = 1;
|
||||||
|
AddrMode.ScaledReg = Addr;
|
||||||
|
if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
|
||||||
|
return true;
|
||||||
|
AddrMode.Scale = 0;
|
||||||
|
AddrMode.ScaledReg = 0;
|
||||||
|
}
|
||||||
|
// Couldn't match.
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
|
||||||
|
/// inline asm call are due to memory operands. If so, return true, otherwise
|
||||||
|
/// return false.
|
||||||
|
static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
|
||||||
|
const TargetLowering &TLI) {
|
||||||
|
std::vector<InlineAsm::ConstraintInfo>
|
||||||
|
Constraints = IA->ParseConstraints();
|
||||||
|
|
||||||
|
unsigned ArgNo = 1; // ArgNo - The operand of the CallInst.
|
||||||
|
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
||||||
|
TargetLowering::AsmOperandInfo OpInfo(Constraints[i]);
|
||||||
|
|
||||||
|
// Compute the value type for each operand.
|
||||||
|
switch (OpInfo.Type) {
|
||||||
|
case InlineAsm::isOutput:
|
||||||
|
if (OpInfo.isIndirect)
|
||||||
|
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||||
|
break;
|
||||||
|
case InlineAsm::isInput:
|
||||||
|
OpInfo.CallOperandVal = CI->getOperand(ArgNo++);
|
||||||
|
break;
|
||||||
|
case InlineAsm::isClobber:
|
||||||
|
// Nothing to do.
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute the constraint code and ConstraintType to use.
|
||||||
|
TLI.ComputeConstraintToUse(OpInfo, SDValue(),
|
||||||
|
OpInfo.ConstraintType == TargetLowering::C_Memory);
|
||||||
|
|
||||||
|
// If this asm operand is our Value*, and if it isn't an indirect memory
|
||||||
|
// operand, we can't fold it!
|
||||||
|
if (OpInfo.CallOperandVal == OpVal &&
|
||||||
|
(OpInfo.ConstraintType != TargetLowering::C_Memory ||
|
||||||
|
!OpInfo.isIndirect))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
|
||||||
|
/// memory use. If we find an obviously non-foldable instruction, return true.
|
||||||
|
/// Add the ultimately found memory instructions to MemoryUses.
|
||||||
|
static bool FindAllMemoryUses(Instruction *I,
|
||||||
|
SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
|
||||||
|
SmallPtrSet<Instruction*, 16> &ConsideredInsts,
|
||||||
|
const TargetLowering &TLI) {
|
||||||
|
// If we already considered this instruction, we're done.
|
||||||
|
if (!ConsideredInsts.insert(I))
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// If this is an obviously unfoldable instruction, bail out.
|
||||||
|
if (!MightBeFoldableInst(I))
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// Loop over all the uses, recursively processing them.
|
||||||
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||||
|
UI != E; ++UI) {
|
||||||
|
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
||||||
|
MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
||||||
|
if (UI.getOperandNo() == 0) return true; // Storing addr, not into addr.
|
||||||
|
MemoryUses.push_back(std::make_pair(SI, UI.getOperandNo()));
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||||
|
InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
|
||||||
|
if (IA == 0) return true;
|
||||||
|
|
||||||
|
// If this is a memory operand, we're cool, otherwise bail out.
|
||||||
|
if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
|
||||||
|
return true;
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (FindAllMemoryUses(cast<Instruction>(*UI), MemoryUses, ConsideredInsts,
|
||||||
|
TLI))
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
|
||||||
|
/// the use site that we're folding it into. If so, there is no cost to
|
||||||
|
/// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
|
||||||
|
/// that we know are live at the instruction already.
|
||||||
|
bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
|
||||||
|
Value *KnownLive2) {
|
||||||
|
// If Val is either of the known-live values, we know it is live!
|
||||||
|
if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// All values other than instructions and arguments (e.g. constants) are live.
|
||||||
|
if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
|
||||||
|
|
||||||
|
// If Val is a constant sized alloca in the entry block, it is live, this is
|
||||||
|
// true because it is just a reference to the stack/frame pointer, which is
|
||||||
|
// live for the whole function.
|
||||||
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
|
||||||
|
if (AI->isStaticAlloca())
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// Check to see if this value is already used in the memory instruction's
|
||||||
|
// block. If so, it's already live into the block at the very least, so we
|
||||||
|
// can reasonably fold it.
|
||||||
|
BasicBlock *MemBB = MemoryInst->getParent();
|
||||||
|
for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
|
||||||
|
UI != E; ++UI)
|
||||||
|
// We know that uses of arguments and instructions have to be instructions.
|
||||||
|
if (cast<Instruction>(*UI)->getParent() == MemBB)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
|
||||||
|
/// mode of the machine to fold the specified instruction into a load or store
|
||||||
|
/// that ultimately uses it. However, the specified instruction has multiple
|
||||||
|
/// uses. Given this, it may actually increase register pressure to fold it
|
||||||
|
/// into the load. For example, consider this code:
|
||||||
|
///
|
||||||
|
/// X = ...
|
||||||
|
/// Y = X+1
|
||||||
|
/// use(Y) -> nonload/store
|
||||||
|
/// Z = Y+1
|
||||||
|
/// load Z
|
||||||
|
///
|
||||||
|
/// In this case, Y has multiple uses, and can be folded into the load of Z
|
||||||
|
/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
|
||||||
|
/// be live at the use(Y) line. If we don't fold Y into load Z, we use one
|
||||||
|
/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
|
||||||
|
/// number of computations either.
|
||||||
|
///
|
||||||
|
/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
|
||||||
|
/// X was live across 'load Z' for other reasons, we actually *would* want to
|
||||||
|
/// fold the addressing mode in the Z case. This would make Y die earlier.
|
||||||
|
bool AddressingModeMatcher::
|
||||||
|
IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
|
||||||
|
ExtAddrMode &AMAfter) {
|
||||||
|
if (IgnoreProfitability) return true;
|
||||||
|
|
||||||
|
// AMBefore is the addressing mode before this instruction was folded into it,
|
||||||
|
// and AMAfter is the addressing mode after the instruction was folded. Get
|
||||||
|
// the set of registers referenced by AMAfter and subtract out those
|
||||||
|
// referenced by AMBefore: this is the set of values which folding in this
|
||||||
|
// address extends the lifetime of.
|
||||||
|
//
|
||||||
|
// Note that there are only two potential values being referenced here,
|
||||||
|
// BaseReg and ScaleReg (global addresses are always available, as are any
|
||||||
|
// folded immediates).
|
||||||
|
Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
|
||||||
|
|
||||||
|
// If the BaseReg or ScaledReg was referenced by the previous addrmode, their
|
||||||
|
// lifetime wasn't extended by adding this instruction.
|
||||||
|
if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||||
|
BaseReg = 0;
|
||||||
|
if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
|
||||||
|
ScaledReg = 0;
|
||||||
|
|
||||||
|
// If folding this instruction (and it's subexprs) didn't extend any live
|
||||||
|
// ranges, we're ok with it.
|
||||||
|
if (BaseReg == 0 && ScaledReg == 0)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
// If all uses of this instruction are ultimately load/store/inlineasm's,
|
||||||
|
// check to see if their addressing modes will include this instruction. If
|
||||||
|
// so, we can fold it into all uses, so it doesn't matter if it has multiple
|
||||||
|
// uses.
|
||||||
|
SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
|
||||||
|
SmallPtrSet<Instruction*, 16> ConsideredInsts;
|
||||||
|
if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
|
||||||
|
return false; // Has a non-memory, non-foldable use!
|
||||||
|
|
||||||
|
// Now that we know that all uses of this instruction are part of a chain of
|
||||||
|
// computation involving only operations that could theoretically be folded
|
||||||
|
// into a memory use, loop over each of these uses and see if they could
|
||||||
|
// *actually* fold the instruction.
|
||||||
|
SmallVector<Instruction*, 32> MatchedAddrModeInsts;
|
||||||
|
for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
|
||||||
|
Instruction *User = MemoryUses[i].first;
|
||||||
|
unsigned OpNo = MemoryUses[i].second;
|
||||||
|
|
||||||
|
// Get the access type of this use. If the use isn't a pointer, we don't
|
||||||
|
// know what it accesses.
|
||||||
|
Value *Address = User->getOperand(OpNo);
|
||||||
|
if (!isa<PointerType>(Address->getType()))
|
||||||
|
return false;
|
||||||
|
const Type *AddressAccessTy =
|
||||||
|
cast<PointerType>(Address->getType())->getElementType();
|
||||||
|
|
||||||
|
// Do a match against the root of this address, ignoring profitability. This
|
||||||
|
// will tell us if the addressing mode for the memory operation will
|
||||||
|
// *actually* cover the shared instruction.
|
||||||
|
ExtAddrMode Result;
|
||||||
|
AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
|
||||||
|
MemoryInst, Result);
|
||||||
|
Matcher.IgnoreProfitability = true;
|
||||||
|
bool Success = Matcher.MatchAddr(Address, 0);
|
||||||
|
Success = Success; assert(Success && "Couldn't select *anything*?");
|
||||||
|
|
||||||
|
// If the match didn't cover I, then it won't be shared by it.
|
||||||
|
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
|
||||||
|
I) == MatchedAddrModeInsts.end())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
MatchedAddrModeInsts.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user