From a298d27808ecb8ffb574d6e50f56601db2ec5fda Mon Sep 17 00:00:00 2001 From: Chris Lattner Date: Sun, 28 Apr 2002 00:15:57 +0000 Subject: [PATCH] Change the Dominator info and LoopInfo classes to keep track of BasicBlock's, not const BasicBlocks git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2337 91177308-0d34-0410-b5e6-96231b3b80d8 --- include/llvm/Analysis/Dominators.h | 48 +++++++++---------- include/llvm/Analysis/LoopInfo.h | 30 ++++++------ lib/Analysis/InductionVariable.cpp | 4 +- lib/Analysis/LoopInfo.cpp | 18 +++---- lib/Analysis/PostDominators.cpp | 28 +++++------ lib/Analysis/Writer.cpp | 4 +- .../Utils/PromoteMemoryToRegister.cpp | 8 ++-- lib/VMCore/Dominators.cpp | 28 +++++------ 8 files changed, 82 insertions(+), 86 deletions(-) diff --git a/include/llvm/Analysis/Dominators.h b/include/llvm/Analysis/Dominators.h index 1f35331b928..437a4fc1f3a 100644 --- a/include/llvm/Analysis/Dominators.h +++ b/include/llvm/Analysis/Dominators.h @@ -35,8 +35,7 @@ protected: inline DominatorBase(bool isPostDom) : Root(0), IsPostDominators(isPostDom) {} public: - inline const BasicBlock *getRoot() const { return Root; } - inline BasicBlock *getRoot() { return Root; } + inline BasicBlock *getRoot() const { return Root; } // Returns true if analysis based of postdoms bool isPostDominator() const { return IsPostDominators; } @@ -44,14 +43,14 @@ public: //===----------------------------------------------------------------------===// // -// DominatorSet - Maintain a set for every basic block in a +// DominatorSet - Maintain a set for every basic block in a // function, that represents the blocks that dominate the block. // class DominatorSet : public DominatorBase { public: - typedef std::set DomSetType; // Dom set for a bb + typedef std::set DomSetType; // Dom set for a bb // Map of dom sets - typedef std::map DomSetMapType; + typedef std::map DomSetMapType; private: DomSetMapType Doms; @@ -75,13 +74,13 @@ public: inline iterator begin() { return Doms.begin(); } inline const_iterator end() const { return Doms.end(); } inline iterator end() { return Doms.end(); } - inline const_iterator find(const BasicBlock* B) const { return Doms.find(B); } - inline iterator find( BasicBlock* B) { return Doms.find(B); } + inline const_iterator find(BasicBlock* B) const { return Doms.find(B); } + inline iterator find(BasicBlock* B) { return Doms.find(B); } // getDominators - Return the set of basic blocks that dominate the specified // block. // - inline const DomSetType &getDominators(const BasicBlock *BB) const { + inline const DomSetType &getDominators(BasicBlock *BB) const { const_iterator I = find(BB); assert(I != end() && "BB not in function!"); return I->second; @@ -89,7 +88,7 @@ public: // dominates - Return true if A dominates B. // - inline bool dominates(const BasicBlock *A, const BasicBlock *B) const { + inline bool dominates(BasicBlock *A, BasicBlock *B) const { return getDominators(B).count(A) != 0; } @@ -106,7 +105,7 @@ public: // function. // class ImmediateDominators : public DominatorBase { - std::map IDoms; + std::map IDoms; void calcIDoms(const DominatorSet &DS); public: @@ -132,18 +131,17 @@ public: } // Accessor interface: - typedef std::map IDomMapType; + typedef std::map IDomMapType; typedef IDomMapType::const_iterator const_iterator; inline const_iterator begin() const { return IDoms.begin(); } inline const_iterator end() const { return IDoms.end(); } - inline const_iterator find(const BasicBlock* B) const { return IDoms.find(B);} + inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);} // operator[] - Return the idom for the specified basic block. The start // node returns null, because it does not have an immediate dominator. // - inline const BasicBlock *operator[](const BasicBlock *BB) const { - std::map::const_iterator I = - IDoms.find(BB); + inline BasicBlock *operator[](BasicBlock *BB) const { + std::map::const_iterator I = IDoms.find(BB); return I != IDoms.end() ? I->second : 0; } @@ -172,17 +170,17 @@ class DominatorTree : public DominatorBase { public: typedef Node2 Node; private: - std::map Nodes; + std::map Nodes; void calculate(const DominatorSet &DS); void reset(); - typedef std::map NodeMapType; + typedef std::map NodeMapType; public: class Node2 : public std::vector { friend class DominatorTree; - const BasicBlock *TheNode; - Node2 * const IDom; + BasicBlock *TheNode; + Node2 *IDom; public: - inline const BasicBlock *getNode() const { return TheNode; } + inline BasicBlock *getNode() const { return TheNode; } inline Node2 *getIDom() const { return IDom; } inline const std::vector &getChildren() const { return *this; } @@ -196,7 +194,7 @@ public: } private: - inline Node2(const BasicBlock *node, Node *iDom) + inline Node2(BasicBlock *node, Node *iDom) : TheNode(node), IDom(iDom) {} inline Node2 *addChild(Node *C) { push_back(C); return C; } }; @@ -222,7 +220,7 @@ public: return false; } - inline const Node *operator[](const BasicBlock *BB) const { + inline Node *operator[](BasicBlock *BB) const { NodeMapType::const_iterator i = Nodes.find(BB); return (i != Nodes.end()) ? i->second : 0; } @@ -249,8 +247,8 @@ public: // class DominanceFrontier : public DominatorBase { public: - typedef std::set DomSetType; // Dom set for a bb - typedef std::map DomSetMapType; // Dom set map + typedef std::set DomSetType; // Dom set for a bb + typedef std::map DomSetMapType; // Dom set map private: DomSetMapType Frontiers; const DomSetType &calcDomFrontier(const DominatorTree &DT, @@ -286,7 +284,7 @@ public: typedef DomSetMapType::const_iterator const_iterator; inline const_iterator begin() const { return Frontiers.begin(); } inline const_iterator end() const { return Frontiers.end(); } - inline const_iterator find(const BasicBlock* B) const { return Frontiers.find(B); } + inline const_iterator find(BasicBlock* B) const { return Frontiers.find(B); } // getAnalysisUsage - This obviously provides the dominance frontier, but it // uses dominator sets diff --git a/include/llvm/Analysis/LoopInfo.h b/include/llvm/Analysis/LoopInfo.h index 6c9468c7d3a..edbd55df406 100644 --- a/include/llvm/Analysis/LoopInfo.h +++ b/include/llvm/Analysis/LoopInfo.h @@ -23,7 +23,7 @@ namespace cfg { // class Loop { Loop *ParentLoop; - std::vector Blocks; // First entry is the header node + std::vector Blocks; // First entry is the header node std::vector SubLoops; // Loops contained entirely within this one unsigned LoopDepth; // Nesting depth of this loop @@ -32,20 +32,18 @@ class Loop { public: inline unsigned getLoopDepth() const { return LoopDepth; } - inline const BasicBlock *getHeader() const { return Blocks.front(); } + inline BasicBlock *getHeader() const { return Blocks.front(); } // contains - Return true of the specified basic block is in this loop - bool contains(const BasicBlock *BB) const; + bool contains(BasicBlock *BB) const; // getSubLoops - Return the loops contained entirely within this loop inline const std::vector &getSubLoops() const { return SubLoops; } - inline const std::vector &getBlocks() const { - return Blocks; - } + inline const std::vector &getBlocks() const { return Blocks; } private: friend class LoopInfo; - inline Loop(const BasicBlock *BB) { Blocks.push_back(BB); LoopDepth = 0; } + inline Loop(BasicBlock *BB) { Blocks.push_back(BB); LoopDepth = 0; } ~Loop() { for (unsigned i = 0, e = SubLoops.size(); i != e; ++i) delete SubLoops[i]; @@ -66,7 +64,7 @@ private: // class LoopInfo : public FunctionPass { // BBMap - Mapping of basic blocks to the inner most loop they occur in - std::map BBMap; + std::map BBMap; std::vector TopLevelLoops; public: static AnalysisID ID; // cfg::LoopInfo Analysis ID @@ -80,29 +78,29 @@ public: // getLoopFor - Return the inner most loop that BB lives in. If a basic block // is in no loop (for example the entry node), null is returned. // - const Loop *getLoopFor(const BasicBlock *BB) const { - std::map::const_iterator I = BBMap.find(BB); + const Loop *getLoopFor(BasicBlock *BB) const { + std::map::const_iterator I = BBMap.find(BB); return I != BBMap.end() ? I->second : 0; } - inline const Loop *operator[](const BasicBlock *BB) const { + inline const Loop *operator[](BasicBlock *BB) const { return getLoopFor(BB); } // getLoopDepth - Return the loop nesting level of the specified block... - unsigned getLoopDepth(const BasicBlock *BB) const { + unsigned getLoopDepth(BasicBlock *BB) const { const Loop *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; } #if 0 // isLoopHeader - True if the block is a loop header node - bool isLoopHeader(const BasicBlock *BB) const { + bool isLoopHeader(BasicBlock *BB) const { return getLoopFor(BB)->getHeader() == BB; } // isLoopEnd - True if block jumps to loop entry - bool isLoopEnd(const BasicBlock *BB) const; + bool isLoopEnd(BasicBlock *BB) const; // isLoopExit - True if block is the loop exit - bool isLoopExit(const BasicBlock *BB) const; + bool isLoopExit(BasicBlock *BB) const; #endif // runOnFunction - Pass framework implementation @@ -116,7 +114,7 @@ public: private: void Calculate(const DominatorSet &DS); - Loop *ConsiderForLoop(const BasicBlock *BB, const DominatorSet &DS); + Loop *ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS); }; } // End namespace cfg diff --git a/lib/Analysis/InductionVariable.cpp b/lib/Analysis/InductionVariable.cpp index 8c02dfa334e..4d4306b9d0d 100644 --- a/lib/Analysis/InductionVariable.cpp +++ b/lib/Analysis/InductionVariable.cpp @@ -31,8 +31,8 @@ static bool isLoopInvariant(const Value *V, const cfg::Loop *L) { if (isa(V) || isa(V) || isa(V)) return true; - const Instruction *I = cast(V); - const BasicBlock *BB = I->getParent(); + Instruction *I = cast(V); + BasicBlock *BB = I->getParent(); return !L->contains(BB); } diff --git a/lib/Analysis/LoopInfo.cpp b/lib/Analysis/LoopInfo.cpp index c34aef7b9c7..bf69172676d 100644 --- a/lib/Analysis/LoopInfo.cpp +++ b/lib/Analysis/LoopInfo.cpp @@ -18,7 +18,7 @@ AnalysisID cfg::LoopInfo::ID(AnalysisID::create()); //===----------------------------------------------------------------------===// // cfg::Loop implementation // -bool cfg::Loop::contains(const BasicBlock *BB) const { +bool cfg::Loop::contains(BasicBlock *BB) const { return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end(); } @@ -42,9 +42,9 @@ bool cfg::LoopInfo::runOnFunction(Function *F) { } void cfg::LoopInfo::Calculate(const DominatorSet &DS) { - const BasicBlock *RootNode = DS.getRoot(); + BasicBlock *RootNode = DS.getRoot(); - for (df_iterator NI = df_begin(RootNode), + for (df_iterator NI = df_begin(RootNode), NE = df_end(RootNode); NI != NE; ++NI) if (Loop *L = ConsiderForLoop(*NI, DS)) TopLevelLoops.push_back(L); @@ -60,15 +60,15 @@ void cfg::LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { } -cfg::Loop *cfg::LoopInfo::ConsiderForLoop(const BasicBlock *BB, - const DominatorSet &DS) { +cfg::Loop *cfg::LoopInfo::ConsiderForLoop(BasicBlock *BB, + const DominatorSet &DS) { if (BBMap.find(BB) != BBMap.end()) return 0; // Havn't processed this node? - std::vector TodoStack; + std::vector TodoStack; // Scan the predecessors of BB, checking to see if BB dominates any of // them. - for (pred_const_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) + for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) if (DS.dominates(BB, *I)) // If BB dominates it's predecessor... TodoStack.push_back(*I); @@ -79,7 +79,7 @@ cfg::Loop *cfg::LoopInfo::ConsiderForLoop(const BasicBlock *BB, BBMap[BB] = L; while (!TodoStack.empty()) { // Process all the nodes in the loop - const BasicBlock *X = TodoStack.back(); + BasicBlock *X = TodoStack.back(); TodoStack.pop_back(); if (!L->contains(X)) { // As of yet unprocessed?? @@ -94,7 +94,7 @@ cfg::Loop *cfg::LoopInfo::ConsiderForLoop(const BasicBlock *BB, // loop can be found for them. Also check subsidary basic blocks to see if // they start subloops of their own. // - for (std::vector::reverse_iterator I = L->Blocks.rbegin(), + for (std::vector::reverse_iterator I = L->Blocks.rbegin(), E = L->Blocks.rend(); I != E; ++I) { // Check to see if this block starts a new loop diff --git a/lib/Analysis/PostDominators.cpp b/lib/Analysis/PostDominators.cpp index cf55ab5c372..a1260835799 100644 --- a/lib/Analysis/PostDominators.cpp +++ b/lib/Analysis/PostDominators.cpp @@ -48,8 +48,8 @@ void cfg::DominatorSet::calcForwardDominatorSet(Function *M) { DomSetType WorkingSet; df_iterator It = df_begin(M), End = df_end(M); for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB); + BasicBlock *BB = *It; + pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are @@ -80,7 +80,7 @@ void cfg::DominatorSet::calcForwardDominatorSet(Function *M) { // only have a single exit node (return stmt), then calculates the post // dominance sets for the function. // -void cfg::DominatorSet::calcPostDominatorSet(Function *M) { +void cfg::DominatorSet::calcPostDominatorSet(Function *F) { // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. @@ -88,8 +88,8 @@ void cfg::DominatorSet::calcPostDominatorSet(Function *M) { Root = getAnalysis().getExitNode(); if (Root == 0) { // No exit node for the function? Postdomsets are all empty - for (Function::const_iterator MI = M->begin(), ME = M->end(); MI!=ME; ++MI) - Doms[*MI] = DomSetType(); + for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) + Doms[*FI] = DomSetType(); return; } @@ -101,8 +101,8 @@ void cfg::DominatorSet::calcPostDominatorSet(Function *M) { DomSetType WorkingSet; idf_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB); + BasicBlock *BB = *It; + succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are @@ -158,7 +158,7 @@ void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { - const BasicBlock *BB = DI->first; + BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -237,7 +237,7 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) { // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { - const BasicBlock *BB = *I; + BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -278,7 +278,7 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) { // Iterate over all nodes in depth first order... for (idf_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { - const BasicBlock *BB = *I; + BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -332,10 +332,10 @@ const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); + BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... - for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) @@ -365,11 +365,11 @@ const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); + BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; - for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB); + for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node) diff --git a/lib/Analysis/Writer.cpp b/lib/Analysis/Writer.cpp index b4d5375ebd8..05bd7705c25 100644 --- a/lib/Analysis/Writer.cpp +++ b/lib/Analysis/Writer.cpp @@ -50,8 +50,8 @@ void cfg::WriteToOutput(const IntervalPartition &IP, ostream &o) { // Dominator Printing Routines //===----------------------------------------------------------------------===// -ostream &operator<<(ostream &o, const set &BBs) { - copy(BBs.begin(),BBs.end(), std::ostream_iterator(o,"\n")); +ostream &operator<<(ostream &o, const set &BBs) { + copy(BBs.begin(),BBs.end(), std::ostream_iterator(o, "\n")); return o; } diff --git a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp index 8726ed43e36..c3ed142cbfe 100644 --- a/lib/Transforms/Utils/PromoteMemoryToRegister.cpp +++ b/lib/Transforms/Utils/PromoteMemoryToRegister.cpp @@ -141,8 +141,8 @@ bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier & DF) { DominanceFrontier::DomSetType s = (*it).second; for (DominanceFrontier::DomSetType::iterator p = s.begin();p!=s.end(); ++p) { - if (queuePhiNode((BasicBlock *)*p, i)) - PhiNodes[i].push_back((BasicBlock *)*p); + if (queuePhiNode(*p, i)) + PhiNodes[i].push_back(*p); } } // perform iterative step @@ -152,8 +152,8 @@ bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier & DF) { DominanceFrontier::DomSetType s = it->second; for (DominanceFrontier::DomSetType::iterator p = s.begin(); p!=s.end(); ++p) { - if (queuePhiNode((BasicBlock *)*p,i)) - PhiNodes[i].push_back((BasicBlock*)*p); + if (queuePhiNode(*p,i)) + PhiNodes[i].push_back(*p); } } } diff --git a/lib/VMCore/Dominators.cpp b/lib/VMCore/Dominators.cpp index cf55ab5c372..a1260835799 100644 --- a/lib/VMCore/Dominators.cpp +++ b/lib/VMCore/Dominators.cpp @@ -48,8 +48,8 @@ void cfg::DominatorSet::calcForwardDominatorSet(Function *M) { DomSetType WorkingSet; df_iterator It = df_begin(M), End = df_end(M); for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB); + BasicBlock *BB = *It; + pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a predecessor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are @@ -80,7 +80,7 @@ void cfg::DominatorSet::calcForwardDominatorSet(Function *M) { // only have a single exit node (return stmt), then calculates the post // dominance sets for the function. // -void cfg::DominatorSet::calcPostDominatorSet(Function *M) { +void cfg::DominatorSet::calcPostDominatorSet(Function *F) { // Since we require that the unify all exit nodes pass has been run, we know // that there can be at most one return instruction in the function left. // Get it. @@ -88,8 +88,8 @@ void cfg::DominatorSet::calcPostDominatorSet(Function *M) { Root = getAnalysis().getExitNode(); if (Root == 0) { // No exit node for the function? Postdomsets are all empty - for (Function::const_iterator MI = M->begin(), ME = M->end(); MI!=ME; ++MI) - Doms[*MI] = DomSetType(); + for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) + Doms[*FI] = DomSetType(); return; } @@ -101,8 +101,8 @@ void cfg::DominatorSet::calcPostDominatorSet(Function *M) { DomSetType WorkingSet; idf_iterator It = idf_begin(Root), End = idf_end(Root); for ( ; It != End; ++It) { - const BasicBlock *BB = *It; - succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB); + BasicBlock *BB = *It; + succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB); if (PI != PEnd) { // Is there SOME predecessor? // Loop until we get to a successor that has had it's dom set filled // in at least once. We are guaranteed to have this because we are @@ -158,7 +158,7 @@ void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) { // for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); DI != DEnd; ++DI) { - const BasicBlock *BB = DI->first; + BasicBlock *BB = DI->first; const DominatorSet::DomSetType &Dominators = DI->second; unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -237,7 +237,7 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) { // Iterate over all nodes in depth first order... for (df_iterator I = df_begin(Root), E = df_end(Root); I != E; ++I) { - const BasicBlock *BB = *I; + BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -278,7 +278,7 @@ void cfg::DominatorTree::calculate(const DominatorSet &DS) { // Iterate over all nodes in depth first order... for (idf_iterator I = idf_begin(Root), E = idf_end(Root); I != E; ++I) { - const BasicBlock *BB = *I; + BasicBlock *BB = *I; const DominatorSet::DomSetType &Dominators = DS.getDominators(BB); unsigned DomSetSize = Dominators.size(); if (DomSetSize == 1) continue; // Root node... IDom = null @@ -332,10 +332,10 @@ const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); + BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... - for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); + for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != Node) @@ -365,11 +365,11 @@ const cfg::DominanceFrontier::DomSetType & cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT, const DominatorTree::Node *Node) { // Loop over CFG successors to calculate DFlocal[Node] - const BasicBlock *BB = Node->getNode(); + BasicBlock *BB = Node->getNode(); DomSetType &S = Frontiers[BB]; // The new set to fill in... if (!Root) return S; - for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB); + for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB); SI != SE; ++SI) { // Does Node immediately dominate this predeccessor? if (DT[*SI]->getIDom() != Node)