Jello is now part of LLI

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5133 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-12-24 00:14:25 +00:00
parent 0eb172cc4a
commit a3b58e8e1b
7 changed files with 0 additions and 544 deletions

View File

@ -1,62 +0,0 @@
//===-- Callback.cpp - Trap handler for function resolution ---------------===//
//
// This file defines the SIGSEGV handler which is invoked when a reference to a
// non-codegen'd function is found.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "Support/Statistic.h"
#include <signal.h>
#include <ucontext.h>
#include <iostream>
static VM *TheVM = 0;
static void TrapHandler(int TN, siginfo_t *SI, ucontext_t *ucp) {
assert(TN == SIGSEGV && "Should be SIGSEGV!");
#ifdef REG_EIP /* this code does not compile on Sparc! */
if (SI->si_code != SEGV_MAPERR || SI->si_addr != 0 ||
ucp->uc_mcontext.gregs[REG_EIP] != 0) {
std::cerr << "Bad SEGV encountered!\n";
abort();
}
// The call instruction should have pushed the return value onto the stack...
unsigned RefAddr = *(unsigned*)ucp->uc_mcontext.gregs[REG_ESP];
RefAddr -= 4; // Backtrack to the reference itself...
DEBUG(std::cerr << "In SEGV handler! Addr=0x" << std::hex << RefAddr
<< " ESP=0x" << ucp->uc_mcontext.gregs[REG_ESP] << std::dec
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RefAddr) << "\n");
// Sanity check to make sure this really is a call instruction...
assert(((unsigned char*)RefAddr)[-1] == 0xE8 && "Not a call instr!");
unsigned NewVal = (unsigned)TheVM->resolveFunctionReference((void*)RefAddr);
// Rewrite the call target... so that we don't fault every time we execute
// the call.
*(unsigned*)RefAddr = NewVal-RefAddr-4;
// Change the instruction pointer to be the real target of the call...
ucp->uc_mcontext.gregs[REG_EIP] = NewVal;
#endif
}
void VM::registerCallback() {
TheVM = this;
// Register the signal handler...
struct sigaction SA;
SA.sa_sigaction = (void (*)(int, siginfo_t*, void*))TrapHandler;
sigfillset(&SA.sa_mask); // Block all signals while codegen'ing
SA.sa_flags = SA_NOCLDSTOP|SA_SIGINFO; // Get siginfo
sigaction(SIGSEGV, &SA, 0); // Install the handler
}

View File

@ -1,107 +0,0 @@
//===-- Emitter.cpp - Write machine code to executable memory -------------===//
//
// This file defines a MachineCodeEmitter object that is used by Jello to write
// machine code to memory and remember where relocatable values lie.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Function.h"
#include "Support/Statistic.h"
namespace {
Statistic<> NumBytes("jello", "Number of bytes of machine code compiled");
class Emitter : public MachineCodeEmitter {
VM &TheVM;
unsigned char *CurBlock;
unsigned char *CurByte;
std::vector<std::pair<BasicBlock*, unsigned *> > BBRefs;
std::map<BasicBlock*, unsigned> BBLocations;
public:
Emitter(VM &vm) : TheVM(vm) {}
virtual void startFunction(MachineFunction &F);
virtual void finishFunction(MachineFunction &F);
virtual void startBasicBlock(MachineBasicBlock &BB);
virtual void emitByte(unsigned char B);
virtual void emitPCRelativeDisp(Value *V);
virtual void emitGlobalAddress(GlobalValue *V);
};
}
MachineCodeEmitter *VM::createEmitter(VM &V) {
return new Emitter(V);
}
#define _POSIX_MAPPED_FILES
#include <unistd.h>
#include <sys/mman.h>
static void *getMemory() {
return mmap(0, 4096*2, PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
}
void Emitter::startFunction(MachineFunction &F) {
CurBlock = (unsigned char *)getMemory();
CurByte = CurBlock; // Start writing at the beginning of the fn.
TheVM.addGlobalMapping(F.getFunction(), CurBlock);
}
void Emitter::finishFunction(MachineFunction &F) {
for (unsigned i = 0, e = BBRefs.size(); i != e; ++i) {
unsigned Location = BBLocations[BBRefs[i].first];
unsigned *Ref = BBRefs[i].second;
*Ref = Location-(unsigned)Ref-4;
}
BBRefs.clear();
BBLocations.clear();
NumBytes += CurByte-CurBlock;
DEBUG(std::cerr << "Finished CodeGen of [" << std::hex << (unsigned)CurBlock
<< std::dec << "] Function: " << F.getFunction()->getName()
<< ": " << CurByte-CurBlock << " bytes of text\n");
}
void Emitter::startBasicBlock(MachineBasicBlock &BB) {
BBLocations[BB.getBasicBlock()] = (unsigned)CurByte;
}
void Emitter::emitByte(unsigned char B) {
*CurByte++ = B; // Write the byte to memory
}
// emitPCRelativeDisp - For functions, just output a displacement that will
// cause a reference to the zero page, which will cause a seg-fault, causing
// things to get resolved on demand. Keep track of these markers.
//
// For basic block references, keep track of where the references are so they
// may be patched up when the basic block is defined.
//
void Emitter::emitPCRelativeDisp(Value *V) {
if (Function *F = dyn_cast<Function>(V)) {
TheVM.addFunctionRef(CurByte, F);
unsigned ZeroAddr = -(unsigned)CurByte-4; // Calculate displacement to null
*(unsigned*)CurByte = ZeroAddr; // 4 byte offset
CurByte += 4;
} else {
BasicBlock *BB = cast<BasicBlock>(V); // Keep track of reference...
BBRefs.push_back(std::make_pair(BB, (unsigned*)CurByte));
CurByte += 4;
}
}
void Emitter::emitGlobalAddress(GlobalValue *V) {
*(void**)CurByte = TheVM.getPointerToGlobal(V);
CurByte += 4;
}

View File

@ -1,110 +0,0 @@
//===-- GlobalVars.cpp - Code to emit global variables to memory ----------===//
//
// This file contains the code to generate global variables to memory.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Constants.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include "VM.h"
#include <iostream>
Statistic<> NumInitBytes("jello", "Number of bytes of data area initialized");
/// EmitGlobals - Emit all of the global variables to memory, storing their
/// addresses into GlobalAddress. This must make sure to copy the contents of
/// their initializers into the memory.
///
void VM::emitGlobals() {
const TargetData &TD = TM.getTargetData();
// Loop over all of the global variables in the program, allocating the memory
// to hold them.
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
if (!I->isExternal()) {
// Get the type of the global...
const Type *Ty = I->getType()->getElementType();
// Allocate some memory for it!
GlobalAddress[I] = new char[TD.getTypeSize(Ty)];
DEBUG(std::cerr << "Allocated global '" << I->getName()
<< "' to addr 0x" << std::hex << GlobalAddress[I] << std::dec
<< "\n");
} else {
assert(0 && "References to external globals not handled yet!");
}
// Now that all of the globals are set up in memory, loop through them all and
// initialize their contents.
for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
if (!I->isExternal())
emitConstantToMemory(I->getInitializer(), GlobalAddress[I]);
}
/// emitConstantToMemory - Use the specified LLVM constant to initialize the
/// specified region of memory.
///
void VM::emitConstantToMemory(Constant *Init, void *Addr) {
const TargetData &TD = TM.getTargetData();
NumInitBytes += TD.getTypeSize (Init->getType ());
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(Init)) {
switch (CI->getType()->getPrimitiveID()) {
case Type::BoolTyID:
*(char*)Addr = cast<ConstantBool>(CI)->getValue();
return;
case Type::UByteTyID:
*(unsigned char*)Addr = cast<ConstantUInt>(CI)->getValue();
return;
case Type::SByteTyID:
*( signed char*)Addr = cast<ConstantSInt>(CI)->getValue();
return;
case Type::UShortTyID:
*(unsigned short*)Addr = cast<ConstantUInt>(CI)->getValue();
return;
case Type::ShortTyID:
*( signed short*)Addr = cast<ConstantSInt>(CI)->getValue();
return;
case Type::UIntTyID:
*(unsigned int*)Addr = cast<ConstantUInt>(CI)->getValue();
return;
case Type::IntTyID:
*( signed int*)Addr = cast<ConstantSInt>(CI)->getValue();
return;
case Type::ULongTyID:
*(uint64_t*)Addr = cast<ConstantUInt>(CI)->getValue();
return;
case Type::LongTyID:
*(int64_t*)Addr = cast<ConstantSInt>(CI)->getValue();
return;
default: break;
}
} else if (ConstantFP *CF = dyn_cast <ConstantFP> (Init)) {
switch (CF->getType ()->getPrimitiveID ()) {
case Type::FloatTyID:
*(float*)Addr = CF->getValue ();
return;
case Type::DoubleTyID:
*(double*)Addr = CF->getValue ();
return;
default: break;
}
} else if (ConstantPointerNull *CP = dyn_cast <ConstantPointerNull> (Init)) {
// Fill the space with a NULL pointer.
*(void **)Addr = NULL;
return;
} else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
unsigned ElementSize = TD.getTypeSize(CA->getType()->getElementType());
for (unsigned i = 0, e = CA->getType()->getNumElements(); i != e; ++i) {
emitConstantToMemory(cast<Constant>(CA->getOperand(i)), Addr);
Addr = (char*)Addr+ElementSize;
}
return;
}
std::cerr << "Offending constant: " << Init << "\n";
assert(0 && "Don't know how to emit this constant to memory!");
}

View File

@ -1,10 +0,0 @@
LEVEL = ../..
TOOLNAME = jello
USEDLIBS = bcreader vmcore codegen x86 support.a target.a scalaropts.a
# Have gcc tell the linker to export symbols from the program so that
# dynamically loaded modules can be linked against them.
#
TOOLLINKOPTS = -ldl
include $(LEVEL)/Makefile.common

View File

@ -1,106 +0,0 @@
//===-- jello.cpp - LLVM Just in Time Compiler ----------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "VM.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/Function.h"
#include <dlfcn.h> // dlsym access
VM::~VM() {
delete MCE;
}
/// setupPassManager - Initialize the VM PassManager object with all of the
/// passes needed for the target to generate code.
///
void VM::setupPassManager() {
// Compile LLVM Code down to machine code in the intermediate representation
if (TM.addPassesToJITCompile(PM)) {
std::cerr << ExeName << ": target '" << TM.getName()
<< "' doesn't support JIT compilation!\n";
abort();
}
// Turn the machine code intermediate representation into bytes in memory that
// may be executed.
//
if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
std::cerr << ExeName << ": target '" << TM.getName()
<< "' doesn't support machine code emission!\n";
abort();
}
}
int VM::run(Function *F) {
int(*PF)(int, char**) = (int(*)(int, char**))getPointerToFunction(F);
assert(PF != 0 && "Null pointer to function?");
unsigned NumArgs = 0;
for (; Argv[NumArgs]; ++NumArgs)
;
return PF(NumArgs, Argv);
}
void *VM::resolveFunctionReference(void *RefAddr) {
Function *F = FunctionRefs[RefAddr];
assert(F && "Reference address not known!");
void *Addr = getPointerToFunction(F);
assert(Addr && "Pointer to function unknown!");
FunctionRefs.erase(RefAddr);
return Addr;
}
const std::string &VM::getFunctionReferencedName(void *RefAddr) {
return FunctionRefs[RefAddr]->getName();
}
// getPointerToGlobal - This returns the address of the specified global
// value. This may involve code generation if it's a function.
//
void *VM::getPointerToGlobal(GlobalValue *GV) {
if (Function *F = dyn_cast<Function>(GV))
return getPointerToFunction(F);
assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?");
return GlobalAddress[GV];
}
static void NoopFn() {}
/// getPointerToFunction - This method is used to get the address of the
/// specified function, compiling it if neccesary.
///
void *VM::getPointerToFunction(Function *F) {
void *&Addr = GlobalAddress[F]; // Function already code gen'd
if (Addr) return Addr;
if (F->isExternal()) {
// If it's an external function, look it up in the process image...
void *Ptr = dlsym(0, F->getName().c_str());
if (Ptr == 0) {
std::cerr << "WARNING: Cannot resolve fn '" << F->getName()
<< "' using a dummy noop function instead!\n";
Ptr = (void*)NoopFn;
}
return Addr = Ptr;
}
// JIT all of the functions in the module. Eventually this will JIT functions
// on demand. This has the effect of populating all of the non-external
// functions into the GlobalAddress table.
PM.run(M);
assert(Addr && "Code generation didn't add function to GlobalAddress table!");
return Addr;
}

View File

@ -1,79 +0,0 @@
//===-- VM.h - Definitions for Virtual Machine ------------------*- C++ -*-===//
//
// This file defines the top level Virtual Machine data structure.
//
//===----------------------------------------------------------------------===//
#ifndef VM_H
#define VM_H
#include "llvm/PassManager.h"
#include <string>
#include <map>
#include <vector>
class Function;
class GlobalValue;
class Constant;
class TargetMachine;
class MachineCodeEmitter;
class VM {
std::string ExeName;
Module &M; // The LLVM program we are running
TargetMachine &TM; // The current target we are compiling to
PassManager PM; // Passes to compile a function
MachineCodeEmitter *MCE; // MCE object
char **Argv;
// GlobalAddress - A mapping between LLVM values and their native code
// generated versions...
std::map<const GlobalValue*, void *> GlobalAddress;
// FunctionRefs - A mapping between addresses that refer to unresolved
// functions and the LLVM function object itself. This is used by the fault
// handler to lazily patch up references...
//
std::map<void*, Function*> FunctionRefs;
public:
VM(const std::string &name, char **AV, Module &m, TargetMachine &tm)
: ExeName(name), M(m), TM(tm), Argv(AV) {
MCE = createEmitter(*this); // Initialize MCE
setupPassManager();
registerCallback();
emitGlobals();
}
~VM();
int run(Function *F);
void addGlobalMapping(const Function *F, void *Addr) {
void *&CurVal = GlobalAddress[(const GlobalValue*)F];
assert(CurVal == 0 && "GlobalMapping already established!");
CurVal = Addr;
}
void addFunctionRef(void *Ref, Function *F) {
FunctionRefs[Ref] = F;
}
const std::string &getFunctionReferencedName(void *RefAddr);
void *resolveFunctionReference(void *RefAddr);
// getPointerToGlobal - This returns the address of the specified global
// value. This may involve code generation if it's a function.
//
void *getPointerToGlobal(GlobalValue *GV);
private:
static MachineCodeEmitter *createEmitter(VM &V);
void setupPassManager();
void *getPointerToFunction(Function *F);
void registerCallback();
void emitGlobals();
void emitConstantToMemory(Constant *Init, void *Addr);
};
#endif

View File

@ -1,70 +0,0 @@
//===-- jello.cpp - LLVM Just in Time Compiler ----------------------------===//
//
// This tool implements a just-in-time compiler for LLVM, allowing direct
// execution of LLVM bytecode in an efficient manner.
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/Bytecode/Reader.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetMachineImpls.h"
#include "Support/CommandLine.h"
#include "VM.h"
#include <memory>
namespace {
cl::opt<std::string>
InputFile(cl::desc("<input bytecode>"), cl::Positional, cl::init("-"));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<std::string>
MainFunction("f", cl::desc("Function to execute"), cl::init("main"),
cl::value_desc("function name"));
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv) {
cl::ParseCommandLineOptions(argc, argv, " llvm just in time compiler\n");
// Allocate a target... in the future this will be controllable on the
// command line.
std::auto_ptr<TargetMachine> Target(
allocateX86TargetMachine(TM::PtrSize64 | TM::BigEndian));
assert(Target.get() && "Could not allocate target machine!");
// Parse the input bytecode file...
std::string ErrorMsg;
std::auto_ptr<Module> M(ParseBytecodeFile(InputFile, &ErrorMsg));
if (M.get() == 0) {
std::cerr << argv[0] << ": bytecode '" << InputFile
<< "' didn't read correctly: << " << ErrorMsg << "\n";
return 1;
}
// Build an argv vector...
InputArgv.insert(InputArgv.begin(), InputFile);
char **Argv = new char*[InputArgv.size()+1];
for (unsigned i = 0, e = InputArgv.size(); i != e; ++i) {
Argv[i] = new char[InputArgv[i].size()+1];
std::copy(InputArgv[i].begin(), InputArgv[i].end(), Argv[i]);
Argv[i][InputArgv[i].size()] = 0;
}
Argv[InputArgv.size()] = 0;
// Create the virtual machine object...
VM TheVM(argv[0], Argv, *M.get(), *Target.get());
Function *F = M.get()->getNamedFunction(MainFunction);
if (F == 0) {
std::cerr << "Could not find function '" << MainFunction <<"' in module!\n";
return 1;
}
// Run the virtual machine...
return TheVM.run(F);
}