Fix spelling of `propagate'.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4423 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Misha Brukman 2002-10-29 23:06:16 +00:00
parent 81619b121c
commit a3bbcb5b66
12 changed files with 63 additions and 63 deletions

View File

@ -621,7 +621,7 @@ that returns a value that does not match the return type of the function.<p>
When the '<tt>ret</tt>' instruction is executed, control flow returns back to When the '<tt>ret</tt>' instruction is executed, control flow returns back to
the calling function's context. If the instruction returns a value, that value the calling function's context. If the instruction returns a value, that value
shall be propogated into the calling function's data space.<p> shall be propagated into the calling function's data space.<p>
<h5>Example:</h5> <h5>Example:</h5>
<pre> <pre>
@ -1700,7 +1700,7 @@ more...
<address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address> <address><a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
<!-- Created: Tue Jan 23 15:19:28 CST 2001 --> <!-- Created: Tue Jan 23 15:19:28 CST 2001 -->
<!-- hhmts start --> <!-- hhmts start -->
Last modified: Tue Sep 17 21:34:30 CDT 2002 Last modified: Tue Oct 29 01:57:05 CST 2002
<!-- hhmts end --> <!-- hhmts end -->
</font> </font>
</body></html> </body></html>

View File

@ -44,7 +44,7 @@ void IntervalPartition::addIntervalToPartition(Interval *I) {
// updatePredecessors - Interval generation only sets the successor fields of // updatePredecessors - Interval generation only sets the successor fields of
// the interval data structures. After interval generation is complete, // the interval data structures. After interval generation is complete,
// run through all of the intervals and propogate successor info as // run through all of the intervals and propagate successor info as
// predecessor info. // predecessor info.
// //
void IntervalPartition::updatePredecessors(Interval *Int) { void IntervalPartition::updatePredecessors(Interval *Int) {
@ -70,7 +70,7 @@ bool IntervalPartition::runOnFunction(Function &F) {
for_each(I, intervals_end(&F), for_each(I, intervals_end(&F),
bind_obj(this, &IntervalPartition::addIntervalToPartition)); bind_obj(this, &IntervalPartition::addIntervalToPartition));
// Now that we know all of the successor information, propogate this to the // Now that we know all of the successor information, propagate this to the
// predecessors for each block... // predecessors for each block...
for_each(Intervals.begin(), Intervals.end(), for_each(Intervals.begin(), Intervals.end(),
bind_obj(this, &IntervalPartition::updatePredecessors)); bind_obj(this, &IntervalPartition::updatePredecessors));
@ -98,7 +98,7 @@ IntervalPartition::IntervalPartition(IntervalPartition &IP, bool) {
for_each(I, intervals_end(IP), for_each(I, intervals_end(IP),
bind_obj(this, &IntervalPartition::addIntervalToPartition)); bind_obj(this, &IntervalPartition::addIntervalToPartition));
// Now that we know all of the successor information, propogate this to the // Now that we know all of the successor information, propagate this to the
// predecessors for each block... // predecessors for each block...
for_each(Intervals.begin(), Intervals.end(), for_each(Intervals.begin(), Intervals.end(),
bind_obj(this, &IntervalPartition::updatePredecessors)); bind_obj(this, &IntervalPartition::updatePredecessors));

View File

@ -197,7 +197,7 @@ bool BBLiveVar::setPropagate(ValueSet *OutSet, const ValueSet *InSet,
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// propogates in set to OutSets of PREDECESSORs // propagates in set to OutSets of PREDECESSORs
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
bool BBLiveVar::applyFlowFunc() { bool BBLiveVar::applyFlowFunc() {

View File

@ -38,7 +38,7 @@ class BBLiveVar : public Annotation {
// treated differently from ordinary uses. // treated differently from ordinary uses.
std::map<const BasicBlock *, ValueSet> PredToEdgeInSetMap; std::map<const BasicBlock *, ValueSet> PredToEdgeInSetMap;
// method to propogate an InSet to OutSet of a predecessor // method to propagate an InSet to OutSet of a predecessor
bool setPropagate(ValueSet *OutSetOfPred, bool setPropagate(ValueSet *OutSetOfPred,
const ValueSet *InSetOfThisBB, const ValueSet *InSetOfThisBB,
const BasicBlock *PredBB); const BasicBlock *PredBB);

View File

@ -197,7 +197,7 @@ bool BBLiveVar::setPropagate(ValueSet *OutSet, const ValueSet *InSet,
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// propogates in set to OutSets of PREDECESSORs // propagates in set to OutSets of PREDECESSORs
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
bool BBLiveVar::applyFlowFunc() { bool BBLiveVar::applyFlowFunc() {

View File

@ -38,7 +38,7 @@ class BBLiveVar : public Annotation {
// treated differently from ordinary uses. // treated differently from ordinary uses.
std::map<const BasicBlock *, ValueSet> PredToEdgeInSetMap; std::map<const BasicBlock *, ValueSet> PredToEdgeInSetMap;
// method to propogate an InSet to OutSet of a predecessor // method to propagate an InSet to OutSet of a predecessor
bool setPropagate(ValueSet *OutSetOfPred, bool setPropagate(ValueSet *OutSetOfPred,
const ValueSet *InSetOfThisBB, const ValueSet *InSetOfThisBB,
const BasicBlock *PredBB); const BasicBlock *PredBB);

View File

@ -1,12 +1,12 @@
//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===// //===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===//
// //
// Correlated Expression Elimination propogates information from conditional // Correlated Expression Elimination propagates information from conditional
// branches to blocks dominated by destinations of the branch. It propogates // branches to blocks dominated by destinations of the branch. It propagates
// information from the condition check itself into the body of the branch, // information from the condition check itself into the body of the branch,
// allowing transformations like these for example: // allowing transformations like these for example:
// //
// if (i == 7) // if (i == 7)
// ... 4*i; // constant propogation // ... 4*i; // constant propagation
// //
// M = i+1; N = j+1; // M = i+1; N = j+1;
// if (i == j) // if (i == j)
@ -91,7 +91,7 @@ namespace {
// kept sorted by the Val field. // kept sorted by the Val field.
std::vector<Relation> Relationships; std::vector<Relation> Relationships;
// If information about this value is known or propogated from constant // If information about this value is known or propagated from constant
// expressions, this range contains the possible values this value may hold. // expressions, this range contains the possible values this value may hold.
ConstantRange Bounds; ConstantRange Bounds;
@ -254,9 +254,9 @@ namespace {
void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal, void InsertRegionExitMerges(PHINode *NewPHI, Instruction *OldVal,
const std::vector<BasicBlock*> &RegionExitBlocks); const std::vector<BasicBlock*> &RegionExitBlocks);
void PropogateBranchInfo(BranchInst *BI); void PropagateBranchInfo(BranchInst *BI);
void PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI); void PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI);
void PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0, void PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
Value *Op1, RegionInfo &RI); Value *Op1, RegionInfo &RI);
void UpdateUsersOfValue(Value *V, RegionInfo &RI); void UpdateUsersOfValue(Value *V, RegionInfo &RI);
void IncorporateInstruction(Instruction *Inst, RegionInfo &RI); void IncorporateInstruction(Instruction *Inst, RegionInfo &RI);
@ -331,11 +331,11 @@ bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
// Loop over all of the blocks that this block is the immediate dominator for. // Loop over all of the blocks that this block is the immediate dominator for.
// Because all information known in this region is also known in all of the // Because all information known in this region is also known in all of the
// blocks that are dominated by this one, we can safely propogate the // blocks that are dominated by this one, we can safely propagate the
// information down now. // information down now.
// //
DominatorTree::Node *BBN = (*DT)[BB]; DominatorTree::Node *BBN = (*DT)[BB];
if (!RI.empty()) // Time opt: only propogate if we can change something if (!RI.empty()) // Time opt: only propagate if we can change something
for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) { for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) {
BasicBlock *Dominated = BBN->getChildren()[i]->getNode(); BasicBlock *Dominated = BBN->getChildren()[i]->getNode();
assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() && assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() &&
@ -344,11 +344,11 @@ bool CEE::TransformRegion(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks){
} }
// Now that all of our successors have information if they deserve it, // Now that all of our successors have information if they deserve it,
// propogate any information our terminator instruction finds to our // propagate any information our terminator instruction finds to our
// successors. // successors.
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) if (BranchInst *BI = dyn_cast<BranchInst>(TI))
if (BI->isConditional()) if (BI->isConditional())
PropogateBranchInfo(BI); PropagateBranchInfo(BI);
// If this is a branch to a block outside our region that simply performs // If this is a branch to a block outside our region that simply performs
// another conditional branch, one whose outcome is known inside of this // another conditional branch, one whose outcome is known inside of this
@ -453,11 +453,11 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
if (PHINode *PN = dyn_cast<PHINode>(&*I)) { if (PHINode *PN = dyn_cast<PHINode>(&*I)) {
int OpNum = PN->getBasicBlockIndex(BB); int OpNum = PN->getBasicBlockIndex(BB);
assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?"); assert(OpNum != -1 && "PHI doesn't have incoming edge for predecessor!?");
PropogateEquality(PN, PN->getIncomingValue(OpNum), NewRI); PropagateEquality(PN, PN->getIncomingValue(OpNum), NewRI);
} else if (SetCondInst *SCI = dyn_cast<SetCondInst>(&*I)) { } else if (SetCondInst *SCI = dyn_cast<SetCondInst>(&*I)) {
Relation::KnownResult Res = getSetCCResult(SCI, NewRI); Relation::KnownResult Res = getSetCCResult(SCI, NewRI);
if (Res == Relation::Unknown) return false; if (Res == Relation::Unknown) return false;
PropogateEquality(SCI, ConstantBool::get(Res), NewRI); PropagateEquality(SCI, ConstantBool::get(Res), NewRI);
} else { } else {
assert(isa<BranchInst>(*I) && "Unexpected instruction type!"); assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
} }
@ -760,30 +760,30 @@ void CEE::BuildRankMap(Function &F) {
} }
// PropogateBranchInfo - When this method is invoked, we need to propogate // PropagateBranchInfo - When this method is invoked, we need to propagate
// information derived from the branch condition into the true and false // information derived from the branch condition into the true and false
// branches of BI. Since we know that there aren't any critical edges in the // branches of BI. Since we know that there aren't any critical edges in the
// flow graph, this can proceed unconditionally. // flow graph, this can proceed unconditionally.
// //
void CEE::PropogateBranchInfo(BranchInst *BI) { void CEE::PropagateBranchInfo(BranchInst *BI) {
assert(BI->isConditional() && "Must be a conditional branch!"); assert(BI->isConditional() && "Must be a conditional branch!");
// Propogate information into the true block... // Propagate information into the true block...
// //
PropogateEquality(BI->getCondition(), ConstantBool::True, PropagateEquality(BI->getCondition(), ConstantBool::True,
getRegionInfo(BI->getSuccessor(0))); getRegionInfo(BI->getSuccessor(0)));
// Propogate information into the false block... // Propagate information into the false block...
// //
PropogateEquality(BI->getCondition(), ConstantBool::False, PropagateEquality(BI->getCondition(), ConstantBool::False,
getRegionInfo(BI->getSuccessor(1))); getRegionInfo(BI->getSuccessor(1)));
} }
// PropogateEquality - If we discover that two values are equal to each other in // PropagateEquality - If we discover that two values are equal to each other in
// a specified region, propogate this knowledge recursively. // a specified region, propagate this knowledge recursively.
// //
void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) { void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
if (Op0 == Op1) return; // Gee whiz. Are these really equal each other? if (Op0 == Op1) return; // Gee whiz. Are these really equal each other?
if (isa<Constant>(Op0)) // Make sure the constant is always Op1 if (isa<Constant>(Op0)) // Make sure the constant is always Op1
@ -811,8 +811,8 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// as well. // as well.
// //
if (CB->getValue() && Inst->getOpcode() == Instruction::And) { if (CB->getValue() && Inst->getOpcode() == Instruction::And) {
PropogateEquality(Inst->getOperand(0), CB, RI); PropagateEquality(Inst->getOperand(0), CB, RI);
PropogateEquality(Inst->getOperand(1), CB, RI); PropagateEquality(Inst->getOperand(1), CB, RI);
} }
// If we know that this instruction is an OR instruction, and the result // If we know that this instruction is an OR instruction, and the result
@ -820,8 +820,8 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// as well. // as well.
// //
if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) { if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) {
PropogateEquality(Inst->getOperand(0), CB, RI); PropagateEquality(Inst->getOperand(0), CB, RI);
PropogateEquality(Inst->getOperand(1), CB, RI); PropagateEquality(Inst->getOperand(1), CB, RI);
} }
// If we know that this instruction is a NOT instruction, we know that the // If we know that this instruction is a NOT instruction, we know that the
@ -829,48 +829,48 @@ void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// //
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst)) if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
if (BinaryOperator::isNot(BOp)) if (BinaryOperator::isNot(BOp))
PropogateEquality(BinaryOperator::getNotArgument(BOp), PropagateEquality(BinaryOperator::getNotArgument(BOp),
ConstantBool::get(!CB->getValue()), RI); ConstantBool::get(!CB->getValue()), RI);
// If we know the value of a SetCC instruction, propogate the information // If we know the value of a SetCC instruction, propagate the information
// about the relation into this region as well. // about the relation into this region as well.
// //
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) { if (SetCondInst *SCI = dyn_cast<SetCondInst>(Inst)) {
if (CB->getValue()) { // If we know the condition is true... if (CB->getValue()) { // If we know the condition is true...
// Propogate info about the LHS to the RHS & RHS to LHS // Propagate info about the LHS to the RHS & RHS to LHS
PropogateRelation(SCI->getOpcode(), SCI->getOperand(0), PropagateRelation(SCI->getOpcode(), SCI->getOperand(0),
SCI->getOperand(1), RI); SCI->getOperand(1), RI);
PropogateRelation(SCI->getSwappedCondition(), PropagateRelation(SCI->getSwappedCondition(),
SCI->getOperand(1), SCI->getOperand(0), RI); SCI->getOperand(1), SCI->getOperand(0), RI);
} else { // If we know the condition is false... } else { // If we know the condition is false...
// We know the opposite of the condition is true... // We know the opposite of the condition is true...
Instruction::BinaryOps C = SCI->getInverseCondition(); Instruction::BinaryOps C = SCI->getInverseCondition();
PropogateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI); PropagateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI);
PropogateRelation(SetCondInst::getSwappedCondition(C), PropagateRelation(SetCondInst::getSwappedCondition(C),
SCI->getOperand(1), SCI->getOperand(0), RI); SCI->getOperand(1), SCI->getOperand(0), RI);
} }
} }
} }
} }
// Propogate information about Op0 to Op1 & visa versa // Propagate information about Op0 to Op1 & visa versa
PropogateRelation(Instruction::SetEQ, Op0, Op1, RI); PropagateRelation(Instruction::SetEQ, Op0, Op1, RI);
PropogateRelation(Instruction::SetEQ, Op1, Op0, RI); PropagateRelation(Instruction::SetEQ, Op1, Op0, RI);
} }
// PropogateRelation - We know that the specified relation is true in all of the // PropagateRelation - We know that the specified relation is true in all of the
// blocks in the specified region. Propogate the information about Op0 and // blocks in the specified region. Propagate the information about Op0 and
// anything derived from it into this region. // anything derived from it into this region.
// //
void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0, void CEE::PropagateRelation(Instruction::BinaryOps Opcode, Value *Op0,
Value *Op1, RegionInfo &RI) { Value *Op1, RegionInfo &RI) {
assert(Op0->getType() == Op1->getType() && "Equal types expected!"); assert(Op0->getType() == Op1->getType() && "Equal types expected!");
// Constants are already pretty well understood. We will apply information // Constants are already pretty well understood. We will apply information
// about the constant to Op1 in another call to PropogateRelation. // about the constant to Op1 in another call to PropagateRelation.
// //
if (isa<Constant>(Op0)) return; if (isa<Constant>(Op0)) return;
@ -896,7 +896,7 @@ void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
} }
// If the information propogted is new, then we want process the uses of this // If the information propogted is new, then we want process the uses of this
// instruction to propogate the information down to them. // instruction to propagate the information down to them.
// //
if (Op1R.incorporate(Opcode, VI)) if (Op1R.incorporate(Opcode, VI))
UpdateUsersOfValue(Op0, RI); UpdateUsersOfValue(Op0, RI);
@ -904,16 +904,16 @@ void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0,
// UpdateUsersOfValue - The information about V in this region has been updated. // UpdateUsersOfValue - The information about V in this region has been updated.
// Propogate this to all consumers of the value. // Propagate this to all consumers of the value.
// //
void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) { void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) {
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); for (Value::use_iterator I = V->use_begin(), E = V->use_end();
I != E; ++I) I != E; ++I)
if (Instruction *Inst = dyn_cast<Instruction>(*I)) { if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
// If this is an instruction using a value that we know something about, // If this is an instruction using a value that we know something about,
// try to propogate information to the value produced by the // try to propagate information to the value produced by the
// instruction. We can only do this if it is an instruction we can // instruction. We can only do this if it is an instruction we can
// propogate information for (a setcc for example), and we only WANT to // propagate information for (a setcc for example), and we only WANT to
// do this if the instruction dominates this region. // do this if the instruction dominates this region.
// //
// If the instruction doesn't dominate this region, then it cannot be // If the instruction doesn't dominate this region, then it cannot be
@ -937,7 +937,7 @@ void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
// See if we can figure out a result for this instruction... // See if we can figure out a result for this instruction...
Relation::KnownResult Result = getSetCCResult(SCI, RI); Relation::KnownResult Result = getSetCCResult(SCI, RI);
if (Result != Relation::Unknown) { if (Result != Relation::Unknown) {
PropogateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False, PropagateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False,
RI); RI);
} }
} }

View File

@ -726,7 +726,7 @@ bool InstCombiner::runOnFunction(Function &F) {
Instruction *I = WorkList.back(); // Get an instruction from the worklist Instruction *I = WorkList.back(); // Get an instruction from the worklist
WorkList.pop_back(); WorkList.pop_back();
// Check to see if we can DCE or ConstantPropogate the instruction... // Check to see if we can DCE or ConstantPropagate the instruction...
// Check to see if we can DIE the instruction... // Check to see if we can DIE the instruction...
if (isInstructionTriviallyDead(I)) { if (isInstructionTriviallyDead(I)) {
// Add operands to the worklist... // Add operands to the worklist...
@ -742,7 +742,7 @@ bool InstCombiner::runOnFunction(Function &F) {
} }
} }
// Instruction isn't dead, see if we can constant propogate it... // Instruction isn't dead, see if we can constant propagate it...
if (Constant *C = ConstantFoldInstruction(I)) { if (Constant *C = ConstantFoldInstruction(I)) {
// Add operands to the worklist... // Add operands to the worklist...
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)

View File

@ -482,7 +482,7 @@ void SCCP::visitCastInst(CastInst &I) {
InstVal &VState = getValueState(V); InstVal &VState = getValueState(V);
if (VState.isOverdefined()) { // Inherit overdefinedness of operand if (VState.isOverdefined()) { // Inherit overdefinedness of operand
markOverdefined(&I); markOverdefined(&I);
} else if (VState.isConstant()) { // Propogate constant value } else if (VState.isConstant()) { // Propagate constant value
Constant *Result = Constant *Result =
ConstantFoldCastInstruction(VState.getConstant(), I.getType()); ConstantFoldCastInstruction(VState.getConstant(), I.getType());

View File

@ -26,7 +26,7 @@ void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
// Delete the unneccesary instruction now... // Delete the unneccesary instruction now...
BI = BIL.erase(BI); BI = BIL.erase(BI);
// Make sure to propogate a name if there is one already... // Make sure to propagate a name if there is one already...
if (OldName.size() && !V->hasName()) if (OldName.size() && !V->hasName())
V->setName(OldName, BIL.getParent()->getSymbolTable()); V->setName(OldName, BIL.getParent()->getSymbolTable());
} }

View File

@ -11,7 +11,7 @@
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
// PropogatePredecessors - This gets "Succ" ready to have the predecessors from // PropagatePredecessors - This gets "Succ" ready to have the predecessors from
// "BB". This is a little tricky because "Succ" has PHI nodes, which need to // "BB". This is a little tricky because "Succ" has PHI nodes, which need to
// have extra slots added to them to hold the merge edges from BB's // have extra slots added to them to hold the merge edges from BB's
// predecessors. This function returns true (failure) if the Succ BB already // predecessors. This function returns true (failure) if the Succ BB already
@ -19,7 +19,7 @@
// //
// Assumption: Succ is the single successor for BB. // Assumption: Succ is the single successor for BB.
// //
static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { static bool PropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
if (!isa<PHINode>(Succ->front())) if (!isa<PHINode>(Succ->front()))
@ -112,7 +112,7 @@ bool SimplifyCFG(BasicBlock *BB) {
// Be careful though, if this transformation fails (returns true) then // Be careful though, if this transformation fails (returns true) then
// we cannot do this transformation! // we cannot do this transformation!
// //
if (!PropogatePredecessorsForPHIs(BB, Succ)) { if (!PropagatePredecessorsForPHIs(BB, Succ)) {
//cerr << "Killing Trivial BB: \n" << BB; //cerr << "Killing Trivial BB: \n" << BB;
BB->replaceAllUsesWith(Succ); BB->replaceAllUsesWith(Succ);
std::string OldName = BB->getName(); std::string OldName = BB->getName();

View File

@ -358,7 +358,7 @@ public:
return 0; return 0;
} }
// {start/end}Pass - Called when a pass is started, it just propogates // {start/end}Pass - Called when a pass is started, it just propagates
// information up to the top level PassManagerT object to tell it that a pass // information up to the top level PassManagerT object to tell it that a pass
// has started or ended. This is used to gather timing information about // has started or ended. This is used to gather timing information about
// passes. // passes.
@ -384,7 +384,7 @@ public:
LastUseOf[I->second] = User; // Local pass, extend the lifetime LastUseOf[I->second] = User; // Local pass, extend the lifetime
} else { } else {
// Pass not in current available set, must be a higher level pass // Pass not in current available set, must be a higher level pass
// available to us, propogate to parent pass manager... We tell the // available to us, propagate to parent pass manager... We tell the
// parent that we (the passmanager) are using the analysis so that it // parent that we (the passmanager) are using the analysis so that it
// frees the analysis AFTER this pass manager runs. // frees the analysis AFTER this pass manager runs.
// //