LoopVectorizer: Recognize min/max reductions

A min/max operation is represented by a select(cmp(lt/le/gt/ge, X, Y), X, Y)
sequence in LLVM. If we see such a sequence we can treat it just as any other
commutative binary instruction and reduce it.

This appears to help bzip2 by about 1.5% on an imac12,2.

radar://12960601

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179773 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Arnold Schwaighofer 2013-04-18 17:22:34 +00:00
parent bff177676c
commit a3fb330d05
2 changed files with 608 additions and 34 deletions

View File

@ -343,6 +343,7 @@ public:
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
RK_IntegerMinMax, //< Min/max implemented in terms of select(cmp()).
RK_FloatAdd, ///< Sum of floats.
RK_FloatMult ///< Product of floats.
};
@ -361,8 +362,9 @@ public:
ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
Kind(RK_NoReduction) {}
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
: StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
CmpInst::Predicate P)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxPred(P) {}
// The starting value of the reduction.
// It does not have to be zero!
@ -371,6 +373,25 @@ public:
Instruction *LoopExitInstr;
// The kind of the reduction.
ReductionKind Kind;
// If this a min/max reduction the kind of reduction.
CmpInst::Predicate MinMaxPred;
};
/// This POD struct holds information about a potential reduction operation.
struct ReductionInstDesc {
ReductionInstDesc(bool IsRedux, Instruction *I) :
IsReduction(IsRedux), PatternLastInst(I), Predicate(ICmpInst::ICMP_EQ) {}
ReductionInstDesc(Instruction *I, CmpInst::Predicate P) :
IsReduction(true), PatternLastInst(I), Predicate(P) {}
// Is this instruction a reduction candidate.
bool IsReduction;
// The last instruction in a min/max pattern (select of the select(icmp())
// pattern), or the current reduction instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
CmpInst::Predicate Predicate;
};
// This POD struct holds information about the memory runtime legality
@ -487,9 +508,13 @@ private:
/// Returns True, if 'Phi' is the kind of reduction variable for type
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
/// Returns true if the instruction I can be a reduction variable of type
/// 'Kind'.
bool isReductionInstr(Instruction *I, ReductionKind Kind);
/// Returns a struct describing if the instruction 'I' can be a reduction
/// variable of type 'Kind'. If the reduction is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
ReductionInstDesc Desc);
/// Returns the induction kind of Phi. This function may return NoInduction
/// if the PHI is not an induction variable.
InductionKind isInductionVariable(PHINode *Phi);
@ -1437,7 +1462,8 @@ InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
/// This function returns the identity element (or neutral element) for
/// the operation K.
static Constant*
getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp,
CmpInst::Predicate Pred) {
switch (K) {
case LoopVectorizationLegality:: RK_IntegerXor:
case LoopVectorizationLegality:: RK_IntegerAdd:
@ -1456,6 +1482,28 @@ getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
case LoopVectorizationLegality:: RK_FloatAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
case LoopVectorizationLegality:: RK_IntegerMinMax:
switch(Pred) {
default: llvm_unreachable("Unknown min/max predicate");
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
return ConstantInt::getAllOnesValue(Tp);
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
return ConstantInt::get(Tp, 0);
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE: {
unsigned BitWidth = Tp->getPrimitiveSizeInBits();
return ConstantInt::get(Tp->getContext(),
APInt::getSignedMaxValue(BitWidth));
}
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE: {
unsigned BitWidth = Tp->getPrimitiveSizeInBits();
return ConstantInt::get(Tp->getContext(),
APInt::getSignedMinValue(BitWidth));
}
}
default:
llvm_unreachable("Unknown reduction kind");
}
@ -1566,7 +1614,7 @@ getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
}
/// This function translates the reduction kind to an LLVM binary operator.
static Instruction::BinaryOps
static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
switch (Kind) {
case LoopVectorizationLegality::RK_IntegerAdd:
@ -1583,11 +1631,20 @@ getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
return Instruction::FMul;
case LoopVectorizationLegality::RK_FloatAdd:
return Instruction::FAdd;
case LoopVectorizationLegality::RK_IntegerMinMax:
return Instruction::ICmp;
default:
llvm_unreachable("Unknown reduction operation");
}
}
Value *createMinMaxOp(IRBuilder<> &Builder, ICmpInst::Predicate P, Value *Left,
Value *Right) {
Value *Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
void
InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
//===------------------------------------------------===//
@ -1651,7 +1708,8 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Find the reduction identity variable. Zero for addition, or, xor,
// one for multiplication, -1 for And.
Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType(),
RdxDesc.MinMaxPred);
Constant *Identity = ConstantVector::getSplat(VF, Iden);
// This vector is the Identity vector where the first element is the
@ -1699,10 +1757,15 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
unsigned Op = getReductionBinOp(RdxDesc.Kind);
for (unsigned part = 1; part < UF; ++part) {
Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
if (Op != Instruction::ICmp)
ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
RdxParts[part], ReducedPartRdx,
"bin.rdx");
else
ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxPred,
ReducedPartRdx, RdxParts[part]);
}
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
@ -1727,8 +1790,11 @@ InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
ConstantVector::get(ShuffleMask),
"rdx.shuf");
Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
if (Op != Instruction::ICmp)
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
"bin.rdx");
else
TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxPred, TmpVec, Shuf);
}
// The result is in the first element of the vector.
@ -2315,6 +2381,10 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_IntegerMinMax)) {
DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
continue;
}
if (AddReductionVar(Phi, RK_FloatMult)) {
DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
continue;
@ -2734,6 +2804,14 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// out-of-block user. The cycle must end with the original PHI.
Instruction *Iter = Phi;
// To recognize min/max patterns formed by a icmp select sequence, we store
// the number of instruction we saw from the recognized min/max pattern,
// such that we don't stop when we see the phi has two uses (one by the select
// and one by the icmp) and to make sure we only see exactly the two
// instructions.
unsigned NumICmpSelectPatternInst = 0;
ReductionInstDesc ReduxDesc(false, 0);
// Avoid cycles in the chain.
SmallPtrSet<Instruction *, 8> VisitedInsts;
while (VisitedInsts.insert(Iter)) {
@ -2778,23 +2856,35 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
Iter->hasNUsesOrMore(2))
continue;
// We can't have multiple inside users.
if (FoundInBlockUser)
// We can't have multiple inside users except for a combination of
// icmp/select both using the phi.
if (FoundInBlockUser && !NumICmpSelectPatternInst)
return false;
FoundInBlockUser = true;
// Any reduction instr must be of one of the allowed kinds.
if (!isReductionInstr(U, Kind))
ReduxDesc = isReductionInstr(U, Kind, ReduxDesc);
if (!ReduxDesc.IsReduction)
return false;
if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(U) ||
isa<SelectInst>(U)))
++NumICmpSelectPatternInst;
// Reductions of instructions such as Div, and Sub is only
// possible if the LHS is the reduction variable.
if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
if (!U->isCommutative() && !isa<PHINode>(U) && !isa<SelectInst>(U) &&
!isa<ICmpInst>(U) && U->getOperand(0) != Iter)
return false;
Iter = U;
Iter = ReduxDesc.PatternLastInst;
}
// This means we have seen one but not the other instruction of the
// pattern or more than just a select and cmp.
if (Kind == RK_IntegerMinMax && NumICmpSelectPatternInst != 2)
return false;
// We found a reduction var if we have reached the original
// phi node and we only have a single instruction with out-of-loop
// users.
@ -2803,7 +2893,8 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
AllowedExit.insert(ExitInstruction);
// Save the description of this reduction variable.
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
ReduxDesc.Predicate);
Reductions[Phi] = RD;
// We've ended the cycle. This is a reduction variable if we have an
// outside user and it has a binary op.
@ -2814,35 +2905,119 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
return false;
}
bool
static CmpInst::Predicate getPredicateSense(CmpInst::Predicate P,
bool ShouldRevert) {
if (!ShouldRevert) return P;
switch(P) {
default:
llvm_unreachable("Unknown predicate sense");
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
return CmpInst::ICMP_ULT;
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE:
return CmpInst::ICMP_SLT;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
return CmpInst::ICMP_UGT;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
return CmpInst::ICMP_SGT;
}
}
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
static LoopVectorizationLegality::ReductionInstDesc
isMinMaxSelectCmpPattern(Instruction *I) {
assert((isa<ICmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
ICmpInst *Cmp = 0;
SelectInst *Select = 0;
// Look for a select(icmp(),...) pattern. Only handle integer reductions for
// now.
if ((Select = dyn_cast<SelectInst>(I))) {
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))))
return LoopVectorizationLegality::ReductionInstDesc(false, I);
// Only handle the single user case
if (!Cmp->hasOneUse())
return LoopVectorizationLegality::ReductionInstDesc(false, I);
} else if ((Cmp = dyn_cast<ICmpInst>(I))) {
// Only handle the single user case.
if (!Cmp->hasOneUse())
return LoopVectorizationLegality::ReductionInstDesc(false, I);
// Look for the select.
if (!(Select = dyn_cast<SelectInst>(*I->use_begin())))
return LoopVectorizationLegality::ReductionInstDesc(false, I);
// Compare must be the first operand of the select.
if (Select->getOperand(0) != Cmp)
return LoopVectorizationLegality::ReductionInstDesc(false, I);
}
CmpInst::Predicate Pred = Cmp->getPredicate();
// Only (u/s)lt/gt/ge/le are min or max patterns.
if (Pred == CmpInst::ICMP_EQ ||
Pred == CmpInst::ICMP_NE)
return LoopVectorizationLegality::ReductionInstDesc(false, I);
Value *SelectOp1 = Select->getOperand(1);
Value *SelectOp2 = Select->getOperand(2);
Value *CmpLeft = Cmp->getOperand(0);
Value *CmpRight = Cmp->getOperand(1);
// Can have reversed sense.
// select(slt(X, Y), Y, X) == select(sge(X, Y), X, Y).
bool IsInverted = (SelectOp2 == CmpLeft && SelectOp1 == CmpRight);
bool IsMinMaxPattern = (SelectOp1 == CmpLeft && SelectOp2 == CmpRight) ||
IsInverted;
// Advance the instruction pointer from the icmp to the select instruction.
if (IsMinMaxPattern) {
CmpInst::Predicate P = getPredicateSense(Pred, IsInverted);
return LoopVectorizationLegality::ReductionInstDesc(Select, P);
}
return LoopVectorizationLegality::ReductionInstDesc(false, I);
}
LoopVectorizationLegality::ReductionInstDesc
LoopVectorizationLegality::isReductionInstr(Instruction *I,
ReductionKind Kind) {
ReductionKind Kind,
ReductionInstDesc Desc) {
bool FP = I->getType()->isFloatingPointTy();
bool FastMath = (FP && I->isCommutative() && I->isAssociative());
switch (I->getOpcode()) {
default:
return false;
return ReductionInstDesc(false, I);
case Instruction::PHI:
if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
return false;
// possibly.
return true;
return ReductionInstDesc(false, I);
return ReductionInstDesc(I, Desc.Predicate);
case Instruction::Sub:
case Instruction::Add:
return Kind == RK_IntegerAdd;
return ReductionInstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
return Kind == RK_IntegerMult;
return ReductionInstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
return Kind == RK_IntegerAnd;
return ReductionInstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
return Kind == RK_IntegerOr;
return ReductionInstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
return Kind == RK_IntegerXor;
return ReductionInstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
return Kind == RK_FloatMult && FastMath;
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
case Instruction::FAdd:
return Kind == RK_FloatAdd && FastMath;
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax)
return ReductionInstDesc(false, I);
return isMinMaxSelectCmpPattern(I);
}
}

View File

@ -0,0 +1,399 @@
; RUN: opt -S -loop-vectorize -dce -instcombine -force-vector-width=2 -force-vector-unroll=1 < %s | FileCheck %s
@A = common global [1024 x i32] zeroinitializer, align 16
; Signed tests.
; Turn this into a max reduction.
; CHECK: @max_red
; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
define i32 @max_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp sgt i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a max reduction. The select has its inputs reversed therefore
; this is a max reduction.
; CHECK: @max_red_inverse_select
; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
define i32 @max_red_inverse_select(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp slt i32 %max.red.08, %0
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a min reduction.
; CHECK: @min_red
; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
define i32 @min_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp slt i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a min reduction. The select has its inputs reversed therefore
; this is a min reduction.
; CHECK: @min_red_inverse_select
; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
define i32 @min_red_inverse_select(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp sgt i32 %max.red.08, %0
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Unsigned tests.
; Turn this into a max reduction.
; CHECK: @umax_red
; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
define i32 @umax_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp ugt i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a max reduction. The select has its inputs reversed therefore
; this is a max reduction.
; CHECK: @umax_red_inverse_select
; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
define i32 @umax_red_inverse_select(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp ult i32 %max.red.08, %0
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a min reduction.
; CHECK: @umin_red
; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
define i32 @umin_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp ult i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; Turn this into a min reduction. The select has its inputs reversed therefore
; this is a min reduction.
; CHECK: @umin_red_inverse_select
; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
define i32 @umin_red_inverse_select(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp ugt i32 %max.red.08, %0
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; SGE -> SLT
; Turn this into a min reduction (select inputs are reversed).
; CHECK: @sge_min_red
; CHECK: icmp sge <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp slt <2 x i32>
; CHECK: select <2 x i1>
define i32 @sge_min_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp sge i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; SLE -> SGT
; Turn this into a max reduction (select inputs are reversed).
; CHECK: @sle_min_red
; CHECK: icmp sle <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp sgt <2 x i32>
; CHECK: select <2 x i1>
define i32 @sle_min_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp sle i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; UGE -> ULT
; Turn this into a min reduction (select inputs are reversed).
; CHECK: @uge_min_red
; CHECK: icmp uge <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ult <2 x i32>
; CHECK: select <2 x i1>
define i32 @uge_min_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp uge i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; ULE -> UGT
; Turn this into a max reduction (select inputs are reversed).
; CHECK: @ule_min_red
; CHECK: icmp ule <2 x i32>
; CHECK: select <2 x i1>
; CHECK: middle.block
; CHECK: icmp ugt <2 x i32>
; CHECK: select <2 x i1>
define i32 @ule_min_red(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%cmp3 = icmp ule i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %max.red.08, i32 %0
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; No reduction.
; CHECK: @no_red_1
; CHECK-NOT: icmp <2 x i32>
define i32 @no_red_1(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%arrayidx1 = getelementptr inbounds [1024 x i32]* @A, i64 1, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%1 = load i32* %arrayidx1, align 4
%cmp3 = icmp sgt i32 %0, %1
%max.red.0 = select i1 %cmp3, i32 %0, i32 %max.red.08
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}
; CHECK: @no_red_2
; CHECK-NOT: icmp <2 x i32>
define i32 @no_red_2(i32 %max) {
entry:
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%max.red.08 = phi i32 [ %max, %entry ], [ %max.red.0, %for.body ]
%arrayidx = getelementptr inbounds [1024 x i32]* @A, i64 0, i64 %indvars.iv
%arrayidx1 = getelementptr inbounds [1024 x i32]* @A, i64 1, i64 %indvars.iv
%0 = load i32* %arrayidx, align 4
%1 = load i32* %arrayidx1, align 4
%cmp3 = icmp sgt i32 %0, %max.red.08
%max.red.0 = select i1 %cmp3, i32 %0, i32 %1
%indvars.iv.next = add i64 %indvars.iv, 1
%lftr.wideiv = trunc i64 %indvars.iv.next to i32
%exitcond = icmp eq i32 %lftr.wideiv, 1024
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 %max.red.0
}