mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-13 22:24:07 +00:00
Factor out LiveIntervalAnalysis' code to determine whether an instruction
is trivially rematerializable and integrate it into TargetInstrInfo::isTriviallyReMaterializable. This way, all places that need to know whether an instruction is rematerializable will get the same answer. This enables the useful parts of the aggressive-remat option by default -- using AliasAnalysis to determine whether a memory location is invariant, and removes the questionable parts -- rematting operations with virtual register inputs that may not be live everywhere. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83687 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -50,8 +50,6 @@ using namespace llvm;
|
||||
static cl::opt<bool> DisableReMat("disable-rematerialization",
|
||||
cl::init(false), cl::Hidden);
|
||||
|
||||
static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden);
|
||||
|
||||
static cl::opt<bool> EnableFastSpilling("fast-spill",
|
||||
cl::init(false), cl::Hidden);
|
||||
|
||||
@ -1408,99 +1406,12 @@ bool LiveIntervals::isReMaterializable(const LiveInterval &li,
|
||||
if (DisableReMat)
|
||||
return false;
|
||||
|
||||
if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
|
||||
return true;
|
||||
|
||||
int FrameIdx = 0;
|
||||
if (tii_->isLoadFromStackSlot(MI, FrameIdx) &&
|
||||
mf_->getFrameInfo()->isImmutableObjectIndex(FrameIdx))
|
||||
// FIXME: Let target specific isReallyTriviallyReMaterializable determines
|
||||
// this but remember this is not safe to fold into a two-address
|
||||
// instruction.
|
||||
// This is a load from fixed stack slot. It can be rematerialized.
|
||||
return true;
|
||||
|
||||
// If the target-specific rules don't identify an instruction as
|
||||
// being trivially rematerializable, use some target-independent
|
||||
// rules.
|
||||
if (!tii_->isTriviallyReMaterializable(MI)) {
|
||||
if (!EnableAggressiveRemat)
|
||||
return false;
|
||||
|
||||
const TargetInstrDesc &TID = MI->getDesc();
|
||||
|
||||
// Avoid instructions obviously unsafe for remat.
|
||||
if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable() ||
|
||||
TID.mayStore())
|
||||
return false;
|
||||
|
||||
// Avoid instructions which load from potentially varying memory.
|
||||
if (TID.mayLoad() && !MI->isInvariantLoad(aa_))
|
||||
return false;
|
||||
|
||||
// If any of the registers accessed are non-constant, conservatively assume
|
||||
// the instruction is not rematerializable.
|
||||
unsigned ImpUse = 0;
|
||||
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
||||
const MachineOperand &MO = MI->getOperand(i);
|
||||
if (MO.isReg()) {
|
||||
unsigned Reg = MO.getReg();
|
||||
if (Reg == 0)
|
||||
continue;
|
||||
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
||||
if (MO.isUse()) {
|
||||
// If the physreg has no defs anywhere, it's just an ambient register
|
||||
// and we can freely move its uses. Alternatively, if it's allocatable,
|
||||
// it could get allocated to something with a def during allocation.
|
||||
if (!mri_->def_empty(Reg))
|
||||
return false;
|
||||
if (allocatableRegs_.test(Reg))
|
||||
return false;
|
||||
// Check for a def among the register's aliases too.
|
||||
for (const unsigned *Alias = tri_->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
unsigned AliasReg = *Alias;
|
||||
if (!mri_->def_empty(AliasReg))
|
||||
return false;
|
||||
if (allocatableRegs_.test(AliasReg))
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
// A physreg def. We can't remat it.
|
||||
return false;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// Only allow one def, and that in the first operand.
|
||||
if (MO.isDef() != (i == 0))
|
||||
return false;
|
||||
|
||||
// Only allow constant-valued registers.
|
||||
bool IsLiveIn = mri_->isLiveIn(Reg);
|
||||
MachineRegisterInfo::def_iterator I = mri_->def_begin(Reg),
|
||||
E = mri_->def_end();
|
||||
|
||||
// For the def, it should be the only def of that register.
|
||||
if (MO.isDef() && (next(I) != E || IsLiveIn))
|
||||
return false;
|
||||
|
||||
if (MO.isUse()) {
|
||||
// Only allow one use other register use, as that's all the
|
||||
// remat mechanisms support currently.
|
||||
if (Reg != li.reg) {
|
||||
if (ImpUse == 0)
|
||||
ImpUse = Reg;
|
||||
else if (Reg != ImpUse)
|
||||
return false;
|
||||
}
|
||||
// For the use, there should be only one associated def.
|
||||
if (I != E && (next(I) != E || IsLiveIn))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!tii_->isTriviallyReMaterializable(MI, aa_))
|
||||
return false;
|
||||
|
||||
// Target-specific code can mark an instruction as being rematerializable
|
||||
// if it has one virtual reg use, though it had better be something like
|
||||
// a PIC base register which is likely to be live everywhere.
|
||||
unsigned ImpUse = getReMatImplicitUse(li, MI);
|
||||
if (ImpUse) {
|
||||
const LiveInterval &ImpLi = getInterval(ImpUse);
|
||||
|
Reference in New Issue
Block a user