Add edges between call instructions and (a) load/store instructions, and

(b) any instructions that use or set CC registers.  Whether or not the
latter are needed really should be machine-dependent.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@1008 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Vikram S. Adve 2001-10-28 21:43:33 +00:00
parent a2a7094662
commit a93bbac606
2 changed files with 222 additions and 68 deletions

View File

@ -45,7 +45,7 @@ struct RegToRefVecMap: public hash_map<int, RefVec> {
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
SchedGraphEdgeDepType _depType,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -63,7 +63,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
const Value* _val,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -81,7 +81,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -347,6 +347,7 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
// Use a latency of 0 because we only need to prevent out-of-order issue.
//
for (int i = (int) termMvec.size()-1; i > (int) first; i--)
{
@ -365,7 +366,7 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
}
// Add CD edges from each instruction preceding the first branch
// to the first branch
// to the first branch. Use a latency of 0 as above.
//
for (int i = first-1; i >= 0; i--)
{
@ -375,8 +376,8 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence
// from all preceding instructions in the basic block.
// Now add CD edges to the first branch instruction in the sequence from
// all preceding instructions in the basic block. Use 0 latency again.
//
const BasicBlock* bb = term->getParent();
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
@ -416,6 +417,23 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
void
SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
@ -426,35 +444,37 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
{
const Instruction* fromInstr = memVec[im];
bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load;
int fromType = (fromInstr->getOpcode() == Instruction::Call
? SG_CALL_REF
: (fromInstr->getOpcode() == Instruction::Load
? SG_LOAD_REF
: SG_STORE_REF));
for (unsigned jm=im+1; jm < NM; jm++)
{
const Instruction* toInstr = memVec[jm];
bool toIsLoad = toInstr->getOpcode() == Instruction::Load;
SchedGraphEdge::DataDepOrderType depOrderType;
if (fromIsLoad)
{
if (toIsLoad) continue; // both instructions are loads
depOrderType = SchedGraphEdge::AntiDep;
}
else
{
depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep
: SchedGraphEdge::OutputDep;
}
int toType = (fromInstr->getOpcode() == Instruction::Call? 2
: ((fromInstr->getOpcode()==Instruction::Load)? 0:1));
if (fromType == SG_LOAD_REF && toType == SG_LOAD_REF)
continue;
unsigned int depOrderType = SG_DepOrderArray[fromType][toType];
MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec();
MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec();
// We have two VM memory instructions, and at least one is a store.
// Add edges between all machine load/store instructions.
//
// We have two VM memory instructions, and at least one is a store
// or a call. Add edges between all machine load/store/call instrs.
// Use a latency of 1 to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++)
{
MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode();
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode))
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode) ||
mii.isCall(fromOpCode))
{
SchedGraphNode* fromNode =
this->getGraphNodeForInstr(fromInstrMvec[i]);
@ -463,7 +483,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
for (unsigned j=0, M=toInstrMvec.size(); j < M; j++)
{
MachineOpCode toOpCode = toInstrMvec[j]->getOpCode();
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode))
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode)
|| mii.isCall(fromOpCode))
{
SchedGraphNode* toNode =
this->getGraphNodeForInstr(toInstrMvec[j]);
@ -481,6 +502,56 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
}
void
SchedGraph::addCallCCEdges(const vector<const Instruction*>& memVec,
MachineCodeForBasicBlock& bbMvec,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
vector<SchedGraphNode*> callNodeVec;
// Find the call machine instructions and put them in a vector.
// By using memVec, we avoid searching the entire machine code of the BB.
//
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
if (memVec[im]->getOpcode() == Instruction::Call)
{
MachineCodeForVMInstr& callMvec=memVec[im]->getMachineInstrVec();
for (unsigned i=0; i < callMvec.size(); ++i)
if (mii.isCall(callMvec[i]->getOpCode()))
callNodeVec.push_back(this->getGraphNodeForInstr(callMvec[i]));
}
// Now add additional edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
//
int lastCallNodeIdx = -1;
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
if (mii.isCall(bbMvec[i]->getOpCode()))
{
++lastCallNodeIdx;
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
break;
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
}
else if (mii.isCCInstr(bbMvec[i]->getOpCode()))
{ // Add incoming/outgoing edges from/to preceding/later calls
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
int j=0;
for ( ; j <= lastCallNodeIdx; j++)
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
MachineCCRegsRID, 0);
for ( ; j < (int) callNodeVec.size(); j++)
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
MachineCCRegsRID, 0);
}
}
void
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
@ -749,7 +820,7 @@ SchedGraph::buildGraph(const TargetMachine& target)
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// Use this data structures to note all LLVM memory instructions.
// Use these data structures to note all LLVM memory instructions.
// We use this to add memory dependence edges without a second full walk.
//
vector<const Instruction*> memVec;
@ -782,11 +853,12 @@ SchedGraph::buildGraph(const TargetMachine& target)
// Build graph nodes for this VM instruction
buildNodesforVMInstr(target, instr);
// Remember the load/store instructions to add memory deps later.
// Remember the load/store/call instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store)
instr->getOpcode() == Instruction::Store ||
instr->getOpcode() == Instruction::Call)
memVec.push_back(instr);
}
}
//----------------------------------------------------------------
// Now add edges for the following (all are incoming edges except (4)):
@ -804,17 +876,22 @@ SchedGraph::buildGraph(const TargetMachine& target)
//
//----------------------------------------------------------------
MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(bb->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store
// Then add memory dep edges: store->load, load->store, and store->store.
// Call instructions are treated as both load and store.
this->addMemEdges(memVec, target);
// Then add edges between call instructions and CC set/use instructions
this->addCallCCEdges(memVec, bbMvec, target);
// Then add other edges for all instructions in the block.
// Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
addEdgesForInstruction(*bbMvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.

View File

@ -45,7 +45,7 @@ struct RegToRefVecMap: public hash_map<int, RefVec> {
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
SchedGraphEdgeDepType _depType,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -63,7 +63,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
const Value* _val,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -81,7 +81,7 @@ SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphEdge::SchedGraphEdge(SchedGraphNode* _src,
SchedGraphNode* _sink,
unsigned int _regNum,
DataDepOrderType _depOrderType,
unsigned int _depOrderType,
int _minDelay)
: src(_src),
sink(_sink),
@ -347,6 +347,7 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
// Use a latency of 0 because we only need to prevent out-of-order issue.
//
for (int i = (int) termMvec.size()-1; i > (int) first; i--)
{
@ -365,7 +366,7 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
}
// Add CD edges from each instruction preceding the first branch
// to the first branch
// to the first branch. Use a latency of 0 as above.
//
for (int i = first-1; i >= 0; i--)
{
@ -375,8 +376,8 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence
// from all preceding instructions in the basic block.
// Now add CD edges to the first branch instruction in the sequence from
// all preceding instructions in the basic block. Use 0 latency again.
//
const BasicBlock* bb = term->getParent();
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
@ -416,6 +417,23 @@ SchedGraph::addCDEdges(const TerminatorInst* term,
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
void
SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
@ -426,35 +444,37 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
{
const Instruction* fromInstr = memVec[im];
bool fromIsLoad = fromInstr->getOpcode() == Instruction::Load;
int fromType = (fromInstr->getOpcode() == Instruction::Call
? SG_CALL_REF
: (fromInstr->getOpcode() == Instruction::Load
? SG_LOAD_REF
: SG_STORE_REF));
for (unsigned jm=im+1; jm < NM; jm++)
{
const Instruction* toInstr = memVec[jm];
bool toIsLoad = toInstr->getOpcode() == Instruction::Load;
SchedGraphEdge::DataDepOrderType depOrderType;
if (fromIsLoad)
{
if (toIsLoad) continue; // both instructions are loads
depOrderType = SchedGraphEdge::AntiDep;
}
else
{
depOrderType = (toIsLoad)? SchedGraphEdge::TrueDep
: SchedGraphEdge::OutputDep;
}
int toType = (fromInstr->getOpcode() == Instruction::Call? 2
: ((fromInstr->getOpcode()==Instruction::Load)? 0:1));
if (fromType == SG_LOAD_REF && toType == SG_LOAD_REF)
continue;
unsigned int depOrderType = SG_DepOrderArray[fromType][toType];
MachineCodeForVMInstr& fromInstrMvec=fromInstr->getMachineInstrVec();
MachineCodeForVMInstr& toInstrMvec = toInstr->getMachineInstrVec();
// We have two VM memory instructions, and at least one is a store.
// Add edges between all machine load/store instructions.
//
// We have two VM memory instructions, and at least one is a store
// or a call. Add edges between all machine load/store/call instrs.
// Use a latency of 1 to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
for (unsigned i=0, N=fromInstrMvec.size(); i < N; i++)
{
MachineOpCode fromOpCode = fromInstrMvec[i]->getOpCode();
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode))
if (mii.isLoad(fromOpCode) || mii.isStore(fromOpCode) ||
mii.isCall(fromOpCode))
{
SchedGraphNode* fromNode =
this->getGraphNodeForInstr(fromInstrMvec[i]);
@ -463,7 +483,8 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
for (unsigned j=0, M=toInstrMvec.size(); j < M; j++)
{
MachineOpCode toOpCode = toInstrMvec[j]->getOpCode();
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode))
if (mii.isLoad(toOpCode) || mii.isStore(toOpCode)
|| mii.isCall(fromOpCode))
{
SchedGraphNode* toNode =
this->getGraphNodeForInstr(toInstrMvec[j]);
@ -481,6 +502,56 @@ SchedGraph::addMemEdges(const vector<const Instruction*>& memVec,
}
void
SchedGraph::addCallCCEdges(const vector<const Instruction*>& memVec,
MachineCodeForBasicBlock& bbMvec,
const TargetMachine& target)
{
const MachineInstrInfo& mii = target.getInstrInfo();
vector<SchedGraphNode*> callNodeVec;
// Find the call machine instructions and put them in a vector.
// By using memVec, we avoid searching the entire machine code of the BB.
//
for (unsigned im=0, NM=memVec.size(); im < NM; im++)
if (memVec[im]->getOpcode() == Instruction::Call)
{
MachineCodeForVMInstr& callMvec=memVec[im]->getMachineInstrVec();
for (unsigned i=0; i < callMvec.size(); ++i)
if (mii.isCall(callMvec[i]->getOpCode()))
callNodeVec.push_back(this->getGraphNodeForInstr(callMvec[i]));
}
// Now add additional edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
//
int lastCallNodeIdx = -1;
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
if (mii.isCall(bbMvec[i]->getOpCode()))
{
++lastCallNodeIdx;
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
break;
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
}
else if (mii.isCCInstr(bbMvec[i]->getOpCode()))
{ // Add incoming/outgoing edges from/to preceding/later calls
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
int j=0;
for ( ; j <= lastCallNodeIdx; j++)
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
MachineCCRegsRID, 0);
for ( ; j < (int) callNodeVec.size(); j++)
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
MachineCCRegsRID, 0);
}
}
void
SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target)
@ -749,7 +820,7 @@ SchedGraph::buildGraph(const TargetMachine& target)
assert(bbVec.size() == 1 && "Only handling a single basic block here");
// Use this data structures to note all LLVM memory instructions.
// Use these data structures to note all LLVM memory instructions.
// We use this to add memory dependence edges without a second full walk.
//
vector<const Instruction*> memVec;
@ -782,11 +853,12 @@ SchedGraph::buildGraph(const TargetMachine& target)
// Build graph nodes for this VM instruction
buildNodesforVMInstr(target, instr);
// Remember the load/store instructions to add memory deps later.
// Remember the load/store/call instructions to add memory deps later.
if (instr->getOpcode() == Instruction::Load ||
instr->getOpcode() == Instruction::Store)
instr->getOpcode() == Instruction::Store ||
instr->getOpcode() == Instruction::Call)
memVec.push_back(instr);
}
}
//----------------------------------------------------------------
// Now add edges for the following (all are incoming edges except (4)):
@ -804,17 +876,22 @@ SchedGraph::buildGraph(const TargetMachine& target)
//
//----------------------------------------------------------------
MachineCodeForBasicBlock& bbMvec = bb->getMachineInstrVec();
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(bb->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store
// Then add memory dep edges: store->load, load->store, and store->store.
// Call instructions are treated as both load and store.
this->addMemEdges(memVec, target);
// Then add edges between call instructions and CC set/use instructions
this->addCallCCEdges(memVec, bbMvec, target);
// Then add other edges for all instructions in the block.
// Do this in machine code order and find all references to machine regs.
MachineCodeForBasicBlock& mvec = bb->getMachineInstrVec();
for (unsigned i=0, N=mvec.size(); i < N; i++)
addEdgesForInstruction(*mvec[i], regToRefVecMap, target);
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
addEdgesForInstruction(*bbMvec[i], regToRefVecMap, target);
// Since the code is no longer in SSA form, add output dep. edges
// between machine instructions that define the same Value, and anti-dep.