mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
Teach globalsmodref-aa to track scalar pointer global variables which point
to unaliased allocations. Use this information to disambiguate pointers loaded from them. This is a very common case, so it's worthwhile to handle efficiently. This implements Analysis/GlobalsModRef/indirect-global.ll git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30684 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b363312940
commit
ab38358fa0
@ -19,6 +19,7 @@
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Analysis/AliasAnalysis.h"
|
||||
#include "llvm/Analysis/CallGraph.h"
|
||||
#include "llvm/Support/InstIterator.h"
|
||||
@ -41,7 +42,10 @@ namespace {
|
||||
Statistic<>
|
||||
NumReadMemFunctions("globalsmodref-aa",
|
||||
"Number of functions that only read memory");
|
||||
|
||||
Statistic<>
|
||||
NumIndirectGlobalVars("globalsmodref-aa",
|
||||
"Number of indirect global objects");
|
||||
|
||||
/// FunctionRecord - One instance of this structure is stored for every
|
||||
/// function in the program. Later, the entries for these functions are
|
||||
/// removed if the function is found to call an external function (in which
|
||||
@ -72,6 +76,14 @@ namespace {
|
||||
/// taken.
|
||||
std::set<GlobalValue*> NonAddressTakenGlobals;
|
||||
|
||||
/// IndirectGlobals - The memory pointed to by this global is known to be
|
||||
/// 'owned' by the global.
|
||||
std::set<GlobalValue*> IndirectGlobals;
|
||||
|
||||
/// AllocsForIndirectGlobals - If an instruction allocates memory for an
|
||||
/// indirect global, this map indicates which one.
|
||||
std::map<Value*, GlobalValue*> AllocsForIndirectGlobals;
|
||||
|
||||
/// FunctionInfo - For each function, keep track of what globals are
|
||||
/// modified or read.
|
||||
std::map<Function*, FunctionRecord> FunctionInfo;
|
||||
@ -131,8 +143,10 @@ namespace {
|
||||
void AnalyzeGlobals(Module &M);
|
||||
void AnalyzeCallGraph(CallGraph &CG, Module &M);
|
||||
void AnalyzeSCC(std::vector<CallGraphNode *> &SCC);
|
||||
bool AnalyzeUsesOfGlobal(Value *V, std::vector<Function*> &Readers,
|
||||
std::vector<Function*> &Writers);
|
||||
bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
|
||||
std::vector<Function*> &Writers,
|
||||
GlobalValue *OkayStoreDest = 0);
|
||||
bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
|
||||
};
|
||||
|
||||
RegisterPass<GlobalsModRef> X("globalsmodref-aa",
|
||||
@ -142,8 +156,30 @@ namespace {
|
||||
|
||||
Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
|
||||
|
||||
/// getUnderlyingObject - This traverses the use chain to figure out what object
|
||||
/// the specified value points to. If the value points to, or is derived from,
|
||||
/// a global object, return it.
|
||||
static Value *getUnderlyingObject(Value *V) {
|
||||
if (!isa<PointerType>(V->getType())) return V;
|
||||
|
||||
// If we are at some type of object... return it.
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
|
||||
|
||||
// Traverse through different addressing mechanisms.
|
||||
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
|
||||
return getUnderlyingObject(I->getOperand(0));
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
||||
if (CE->getOpcode() == Instruction::Cast ||
|
||||
CE->getOpcode() == Instruction::GetElementPtr)
|
||||
return getUnderlyingObject(CE->getOperand(0));
|
||||
}
|
||||
|
||||
// Othewise, we don't know what this is, return it as the base pointer.
|
||||
return V;
|
||||
}
|
||||
|
||||
/// AnalyzeGlobalUses - Scan through the users of all of the internal
|
||||
/// AnalyzeGlobals - Scan through the users of all of the internal
|
||||
/// GlobalValue's in the program. If none of them have their "Address taken"
|
||||
/// (really, their address passed to something nontrivial), record this fact,
|
||||
/// and record the functions that they are used directly in.
|
||||
@ -151,7 +187,7 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
|
||||
std::vector<Function*> Readers, Writers;
|
||||
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||||
if (I->hasInternalLinkage()) {
|
||||
if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
|
||||
if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
|
||||
// Remember that we are tracking this global.
|
||||
NonAddressTakenGlobals.insert(I);
|
||||
++NumNonAddrTakenFunctions;
|
||||
@ -162,7 +198,7 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
|
||||
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
||||
I != E; ++I)
|
||||
if (I->hasInternalLinkage()) {
|
||||
if (!AnalyzeUsesOfGlobal(I, Readers, Writers)) {
|
||||
if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
|
||||
// Remember that we are tracking this global, and the mod/ref fns
|
||||
NonAddressTakenGlobals.insert(I);
|
||||
for (unsigned i = 0, e = Readers.size(); i != e; ++i)
|
||||
@ -172,28 +208,39 @@ void GlobalsModRef::AnalyzeGlobals(Module &M) {
|
||||
for (unsigned i = 0, e = Writers.size(); i != e; ++i)
|
||||
FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
|
||||
++NumNonAddrTakenGlobalVars;
|
||||
|
||||
// If this global holds a pointer type, see if it is an indirect global.
|
||||
if (isa<PointerType>(I->getType()->getElementType()) &&
|
||||
AnalyzeIndirectGlobalMemory(I))
|
||||
++NumIndirectGlobalVars;
|
||||
}
|
||||
Readers.clear(); Writers.clear();
|
||||
}
|
||||
}
|
||||
|
||||
/// AnalyzeUsesOfGlobal - Look at all of the users of the specified global value
|
||||
/// derived pointer. If this is used by anything complex (i.e., the address
|
||||
/// escapes), return true. Also, while we are at it, keep track of those
|
||||
/// functions that read and write to the value.
|
||||
bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V,
|
||||
std::vector<Function*> &Readers,
|
||||
std::vector<Function*> &Writers) {
|
||||
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
|
||||
/// If this is used by anything complex (i.e., the address escapes), return
|
||||
/// true. Also, while we are at it, keep track of those functions that read and
|
||||
/// write to the value.
|
||||
///
|
||||
/// If OkayStoreDest is non-null, stores into this global are allowed.
|
||||
bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
|
||||
std::vector<Function*> &Readers,
|
||||
std::vector<Function*> &Writers,
|
||||
GlobalValue *OkayStoreDest) {
|
||||
if (!isa<PointerType>(V->getType())) return true;
|
||||
|
||||
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
|
||||
Readers.push_back(LI->getParent()->getParent());
|
||||
} else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
||||
if (V == SI->getOperand(0)) return true; // Storing the pointer
|
||||
Writers.push_back(SI->getParent()->getParent());
|
||||
if (V == SI->getOperand(1)) {
|
||||
Writers.push_back(SI->getParent()->getParent());
|
||||
} else if (SI->getOperand(1) != OkayStoreDest) {
|
||||
return true; // Storing the pointer
|
||||
}
|
||||
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
|
||||
if (AnalyzeUsesOfGlobal(GEP, Readers, Writers)) return true;
|
||||
if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
|
||||
} else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
|
||||
// Make sure that this is just the function being called, not that it is
|
||||
// passing into the function.
|
||||
@ -207,19 +254,91 @@ bool GlobalsModRef::AnalyzeUsesOfGlobal(Value *V,
|
||||
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
|
||||
if (CE->getOpcode() == Instruction::GetElementPtr ||
|
||||
CE->getOpcode() == Instruction::Cast) {
|
||||
if (AnalyzeUsesOfGlobal(CE, Readers, Writers))
|
||||
if (AnalyzeUsesOfPointer(CE, Readers, Writers))
|
||||
return true;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(*UI)) {
|
||||
if (AnalyzeUsesOfGlobal(GV, Readers, Writers)) return true;
|
||||
} else if (SetCondInst *SCI = dyn_cast<SetCondInst>(*UI)) {
|
||||
if (!isa<ConstantPointerNull>(SCI->getOperand(1)))
|
||||
return true; // Allow comparison against null.
|
||||
} else if (FreeInst *F = dyn_cast<FreeInst>(*UI)) {
|
||||
Writers.push_back(F->getParent()->getParent());
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
|
||||
/// which holds a pointer type. See if the global always points to non-aliased
|
||||
/// heap memory: that is, all initializers of the globals are allocations, and
|
||||
/// those allocations have no use other than initialization of the global.
|
||||
/// Further, all loads out of GV must directly use the memory, not store the
|
||||
/// pointer somewhere. If this is true, we consider the memory pointed to by
|
||||
/// GV to be owned by GV and can disambiguate other pointers from it.
|
||||
bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
|
||||
// Keep track of values related to the allocation of the memory, f.e. the
|
||||
// value produced by the malloc call and any casts.
|
||||
std::vector<Value*> AllocRelatedValues;
|
||||
|
||||
// Walk the user list of the global. If we find anything other than a direct
|
||||
// load or store, bail out.
|
||||
for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(*I)) {
|
||||
// The pointer loaded from the global can only be used in simple ways:
|
||||
// we allow addressing of it and loading storing to it. We do *not* allow
|
||||
// storing the loaded pointer somewhere else or passing to a function.
|
||||
std::vector<Function*> ReadersWriters;
|
||||
if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
|
||||
return false; // Loaded pointer escapes.
|
||||
// TODO: Could try some IP mod/ref of the loaded pointer.
|
||||
} else if (StoreInst *SI = dyn_cast<StoreInst>(*I)) {
|
||||
// Storing the global itself.
|
||||
if (SI->getOperand(0) == GV) return false;
|
||||
|
||||
// If storing the null pointer, ignore it.
|
||||
if (isa<ConstantPointerNull>(SI->getOperand(0)))
|
||||
continue;
|
||||
|
||||
// Check the value being stored.
|
||||
Value *Ptr = getUnderlyingObject(SI->getOperand(0));
|
||||
|
||||
// FIXME: handle calloc.
|
||||
if (isa<MallocInst>(Ptr)) {
|
||||
// Okay, easy case.
|
||||
} else if (CallInst *CI = dyn_cast<CallInst>(Ptr)) {
|
||||
Function *F = CI->getCalledFunction();
|
||||
if (!F || !F->isExternal()) return false; // Too hard to analyze.
|
||||
if (F->getName() != "calloc") return false; // Not calloc.
|
||||
} else {
|
||||
return false; // Too hard to analyze.
|
||||
}
|
||||
|
||||
// Analyze all uses of the allocation. If any of them are used in a
|
||||
// non-simple way (e.g. stored to another global) bail out.
|
||||
std::vector<Function*> ReadersWriters;
|
||||
if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
|
||||
return false; // Loaded pointer escapes.
|
||||
|
||||
// Remember that this allocation is related to the indirect global.
|
||||
AllocRelatedValues.push_back(Ptr);
|
||||
} else {
|
||||
// Something complex, bail out.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Okay, this is an indirect global. Remember all of the allocations for
|
||||
// this global in AllocsForIndirectGlobals.
|
||||
while (!AllocRelatedValues.empty()) {
|
||||
AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
|
||||
AllocRelatedValues.pop_back();
|
||||
}
|
||||
IndirectGlobals.insert(GV);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// AnalyzeCallGraph - At this point, we know the functions where globals are
|
||||
/// immediately stored to and read from. Propagate this information up the call
|
||||
/// graph to all callers and compute the mod/ref info for all memory for each
|
||||
@ -328,44 +447,62 @@ void GlobalsModRef::AnalyzeSCC(std::vector<CallGraphNode *> &SCC) {
|
||||
|
||||
|
||||
|
||||
/// getUnderlyingObject - This traverses the use chain to figure out what object
|
||||
/// the specified value points to. If the value points to, or is derived from,
|
||||
/// a global object, return it.
|
||||
static const GlobalValue *getUnderlyingObject(const Value *V) {
|
||||
if (!isa<PointerType>(V->getType())) return 0;
|
||||
|
||||
// If we are at some type of object... return it.
|
||||
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
|
||||
|
||||
// Traverse through different addressing mechanisms...
|
||||
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
|
||||
return getUnderlyingObject(I->getOperand(0));
|
||||
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
||||
if (CE->getOpcode() == Instruction::Cast ||
|
||||
CE->getOpcode() == Instruction::GetElementPtr)
|
||||
return getUnderlyingObject(CE->getOperand(0));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// alias - If one of the pointers is to a global that we are tracking, and the
|
||||
/// other is some random pointer, we know there cannot be an alias, because the
|
||||
/// address of the global isn't taken.
|
||||
AliasAnalysis::AliasResult
|
||||
GlobalsModRef::alias(const Value *V1, unsigned V1Size,
|
||||
const Value *V2, unsigned V2Size) {
|
||||
GlobalValue *GV1 = const_cast<GlobalValue*>(getUnderlyingObject(V1));
|
||||
GlobalValue *GV2 = const_cast<GlobalValue*>(getUnderlyingObject(V2));
|
||||
// Get the base object these pointers point to.
|
||||
Value *UV1 = getUnderlyingObject(const_cast<Value*>(V1));
|
||||
Value *UV2 = getUnderlyingObject(const_cast<Value*>(V2));
|
||||
|
||||
// If either of the underlying values is a global, they may be non-addr-taken
|
||||
// globals, which we can answer queries about.
|
||||
GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
|
||||
GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
|
||||
if (GV1 || GV2) {
|
||||
// If the global's address is taken, pretend we don't know it's a pointer to
|
||||
// the global.
|
||||
if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
|
||||
if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
|
||||
|
||||
// If the global's address is taken, pretend we don't know it's a pointer to
|
||||
// the global.
|
||||
if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
|
||||
if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
|
||||
// If the the two pointers are derived from two different non-addr-taken
|
||||
// globals, or if one is and the other isn't, we know these can't alias.
|
||||
if ((GV1 || GV2) && GV1 != GV2)
|
||||
return NoAlias;
|
||||
|
||||
// Otherwise if they are both derived from the same addr-taken global, we
|
||||
// can't know the two accesses don't overlap.
|
||||
}
|
||||
|
||||
// These pointers may be based on the memory owned by an indirect global. If
|
||||
// so, we may be able to handle this. First check to see if the base pointer
|
||||
// is a direct load from an indirect global.
|
||||
GV1 = GV2 = 0;
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(UV1))
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
||||
if (IndirectGlobals.count(GV))
|
||||
GV1 = GV;
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(UV2))
|
||||
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
|
||||
if (IndirectGlobals.count(GV))
|
||||
GV2 = GV;
|
||||
|
||||
// These pointers may also be from an allocation for the indirect global. If
|
||||
// so, also handle them.
|
||||
if (AllocsForIndirectGlobals.count(UV1))
|
||||
GV1 = AllocsForIndirectGlobals[UV1];
|
||||
if (AllocsForIndirectGlobals.count(UV2))
|
||||
GV2 = AllocsForIndirectGlobals[UV2];
|
||||
|
||||
// Now that we know whether the two pointers are related to indirect globals,
|
||||
// use this to disambiguate the pointers. If either pointer is based on an
|
||||
// indirect global and if they are not both based on the same indirect global,
|
||||
// they cannot alias.
|
||||
if ((GV1 || GV2) && GV1 != GV2)
|
||||
return NoAlias;
|
||||
|
||||
|
||||
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
|
||||
}
|
||||
|
||||
@ -375,7 +512,7 @@ GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
|
||||
|
||||
// If we are asking for mod/ref info of a direct call with a pointer to a
|
||||
// global we are tracking, return information if we have it.
|
||||
if (GlobalValue *GV = const_cast<GlobalValue*>(getUnderlyingObject(P)))
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(getUnderlyingObject(P)))
|
||||
if (GV->hasInternalLinkage())
|
||||
if (Function *F = CS.getCalledFunction())
|
||||
if (NonAddressTakenGlobals.count(GV))
|
||||
@ -392,8 +529,28 @@ GlobalsModRef::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
|
||||
// Methods to update the analysis as a result of the client transformation.
|
||||
//
|
||||
void GlobalsModRef::deleteValue(Value *V) {
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
||||
NonAddressTakenGlobals.erase(GV);
|
||||
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
||||
if (NonAddressTakenGlobals.erase(GV)) {
|
||||
// This global might be an indirect global. If so, remove it and remove
|
||||
// any AllocRelatedValues for it.
|
||||
if (IndirectGlobals.erase(GV)) {
|
||||
// Remove any entries in AllocsForIndirectGlobals for this global.
|
||||
for (std::map<Value*, GlobalValue*>::iterator
|
||||
I = AllocsForIndirectGlobals.begin(),
|
||||
E = AllocsForIndirectGlobals.end(); I != E; ) {
|
||||
if (I->second == GV) {
|
||||
AllocsForIndirectGlobals.erase(I++);
|
||||
} else {
|
||||
++I;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Otherwise, if this is an allocation related to an indirect global, remove
|
||||
// it.
|
||||
AllocsForIndirectGlobals.erase(V);
|
||||
}
|
||||
|
||||
void GlobalsModRef::copyValue(Value *From, Value *To) {
|
||||
|
Loading…
Reference in New Issue
Block a user