Handle masked rotate amounts

At the moment we expect rotates to have the form:

   (or (shl X, Y), (shr X, Z))

where Y == bitsize(X) - Z or Z == bitsize(X) - Y.  This form means that
the (or ...) is undefined for Y == 0 or Z == 0.  This undefinedness can
be avoided by using Y == (C * bitsize(X) - Z) & (bitsize(X) - 1) or
Z == (C * bitsize(X) - Y) & (bitsize(X) - 1) for any integer C
(including 0, the most natural choice).


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198861 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford 2014-01-09 10:56:42 +00:00
parent 2984497cc1
commit acb31a245c
2 changed files with 144 additions and 16 deletions

View File

@ -3306,15 +3306,56 @@ static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
return false;
}
// Return true if we can prove that Neg == OpSize - Pos. This means that
// Return true if we can prove that, whenever Neg and Pos are both in the
// range [0, OpSize), Neg == (Pos == 0 ? 0 : OpSize - Pos). This means that
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
//
// (or (shift1 X, Neg), (shift2 X, Pos))
//
// reduces to a rotate in direction shift2 by Pos and a rotate in direction
// shift1 by Neg. Note that the (or ...) then invokes undefined behavior
// if Pos == 0 (and consequently Neg == OpSize).
// shift1 by Neg. The range [0, OpSize) means that we only need to consider
// shift amounts with defined behavior.
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) {
// If OpSize is a power of 2 then:
//
// (a) (Pos == 0 ? 0 : OpSize - Pos) == (OpSize - Pos) & (OpSize - 1)
// (b) Neg == Neg & (OpSize - 1) whenever Neg is in [0, OpSize).
//
// So if OpSize is a power of 2 and Neg is (and Neg', OpSize-1), we check
// for the stronger condition:
//
// Neg & (OpSize - 1) == (OpSize - Pos) & (OpSize - 1) [A]
//
// for all Neg and Pos. Since Neg & (OpSize - 1) == Neg' & (OpSize - 1)
// we can just replace Neg with Neg' for the rest of the function.
//
// In other cases we check for the even stronger condition:
//
// Neg == OpSize - Pos [B]
//
// for all Neg and Pos. Note that the (or ...) then invokes undefined
// behavior if Pos == 0 (and consequently Neg == OpSize).
//
// We could actually use [A] whenever OpSize is a power of 2, but the
// only extra cases that it would match are those uninteresting ones
// where Neg and Pos are never in range at the same time. E.g. for
// OpSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
// as well as (sub 32, Pos), but:
//
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
//
// always invokes undefined behavior for 32-bit X.
//
// Below, Mask == OpSize - 1 when using [A] and is all-ones otherwise.
unsigned LoBits = 0;
if (Neg.getOpcode() == ISD::AND &&
isPowerOf2_64(OpSize) &&
Neg.getOperand(1).getOpcode() == ISD::Constant &&
cast<ConstantSDNode>(Neg.getOperand(1))->getAPIntValue() == OpSize - 1) {
Neg = Neg.getOperand(0);
LoBits = Log2_64(OpSize);
}
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
if (Neg.getOpcode() != ISD::SUB)
return 0;
@ -3323,24 +3364,39 @@ static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned OpSize) {
return 0;
SDValue NegOp1 = Neg.getOperand(1);
// The condition we need to prove is now NegC - NegOp1 == OpSize - Pos.
// Check whether the terms match directly.
// The condition we need is now:
//
// (NegC - NegOp1) & Mask == (OpSize - Pos) & Mask
//
// If NegOp1 == Pos then we need:
//
// OpSize & Mask == NegC & Mask
//
// (because "x & Mask" is a truncation and distributes through subtraction).
APInt Width;
if (Pos == NegOp1)
return NegC->getAPIntValue() == OpSize;
Width = NegC->getAPIntValue();
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
// Then the condition we want to prove becomes:
// NegC - NegOp1 == OpSize - (NegOp1 + PosC)
// NegC == OpSize - PosC
//
// Because NegC and PosC are APInts, this is easier to test as:
// OpSize == NegC + PosC
if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
ConstantSDNode *PosC = dyn_cast<ConstantSDNode>(Pos.getOperand(1));
return PosC && OpSize == NegC->getAPIntValue() + PosC->getAPIntValue();
}
// (NegC - NegOp1) & Mask == (OpSize - (NegOp1 + PosC)) & Mask
//
// which, again because "x & Mask" is a truncation, becomes:
//
// NegC & Mask == (OpSize - PosC) & Mask
// OpSize & Mask == (NegC + PosC) & Mask
else if (Pos.getOpcode() == ISD::ADD &&
Pos.getOperand(0) == NegOp1 &&
Pos.getOperand(1).getOpcode() == ISD::Constant)
Width = (cast<ConstantSDNode>(Pos.getOperand(1))->getAPIntValue() +
NegC->getAPIntValue());
else
return false;
return false;
// Now we just need to check that OpSize & Mask == Width & Mask.
if (LoBits)
return Width.getLoBits(LoBits) == 0;
return Width == OpSize;
}
// A subroutine of MatchRotate used once we have found an OR of two opposite

View File

@ -216,3 +216,75 @@ define i32 @f16(i32 %a, i64 %amt) {
%or = or i32 %parta, %partb
ret i32 %or
}
; Check cases where (-x & 31) is used instead of 32 - x.
define i32 @f17(i32 %x, i32 %y) {
; CHECK-LABEL: f17:
; CHECK: rll %r2, %r2, 0(%r3)
; CHECK: br %r14
entry:
%shl = shl i32 %x, %y
%sub = sub i32 0, %y
%and = and i32 %sub, 31
%shr = lshr i32 %x, %and
%or = or i32 %shr, %shl
ret i32 %or
}
; ...and again with ((32 - x) & 31).
define i32 @f18(i32 %x, i32 %y) {
; CHECK-LABEL: f18:
; CHECK: rll %r2, %r2, 0(%r3)
; CHECK: br %r14
entry:
%shl = shl i32 %x, %y
%sub = sub i32 32, %y
%and = and i32 %sub, 31
%shr = lshr i32 %x, %and
%or = or i32 %shr, %shl
ret i32 %or
}
; This is not a rotation.
define i32 @f19(i32 %x, i32 %y) {
; CHECK-LABEL: f19:
; CHECK-NOT: rll
; CHECK: br %r14
entry:
%shl = shl i32 %x, %y
%sub = sub i32 16, %y
%and = and i32 %sub, 31
%shr = lshr i32 %x, %and
%or = or i32 %shr, %shl
ret i32 %or
}
; Repeat f17 with an addition on the shift count.
define i32 @f20(i32 %x, i32 %y) {
; CHECK-LABEL: f20:
; CHECK: rll %r2, %r2, 199(%r3)
; CHECK: br %r14
entry:
%add = add i32 %y, 199
%shl = shl i32 %x, %add
%sub = sub i32 0, %add
%and = and i32 %sub, 31
%shr = lshr i32 %x, %and
%or = or i32 %shr, %shl
ret i32 %or
}
; ...and again with the InstCombine version.
define i32 @f21(i32 %x, i32 %y) {
; CHECK-LABEL: f21:
; CHECK: rll %r2, %r2, 199(%r3)
; CHECK: br %r14
entry:
%add = add i32 %y, 199
%shl = shl i32 %x, %add
%sub = sub i32 -199, %y
%and = and i32 %sub, 31
%shr = lshr i32 %x, %and
%or = or i32 %shr, %shl
ret i32 %or
}