mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-15 05:24:01 +00:00
Add support for additional vector instructions in the interpreter.
patch by Veselov, Yuri <Yuri.Veselov@intel.com>. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179409 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -114,6 +114,15 @@ static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
|
||||
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
|
||||
break;
|
||||
|
||||
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
|
||||
case Type::VectorTyID: { \
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
|
||||
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
|
||||
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1, \
|
||||
Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
|
||||
} break;
|
||||
|
||||
// Handle pointers specially because they must be compared with only as much
|
||||
// width as the host has. We _do not_ want to be comparing 64 bit values when
|
||||
// running on a 32-bit target, otherwise the upper 32 bits might mess up
|
||||
@ -129,6 +138,7 @@ static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(eq,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(==);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
|
||||
@ -142,6 +152,7 @@ static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(ne,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(!=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
|
||||
@ -155,6 +166,7 @@ static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(ult,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(<);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
|
||||
@ -168,6 +180,7 @@ static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(slt,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(<);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
|
||||
@ -181,6 +194,7 @@ static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(>);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
|
||||
@ -194,6 +208,7 @@ static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(>);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
|
||||
@ -207,6 +222,7 @@ static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(ule,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(<=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
|
||||
@ -220,6 +236,7 @@ static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(sle,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(<=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
|
||||
@ -233,6 +250,7 @@ static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(uge,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(>=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
|
||||
@ -246,6 +264,7 @@ static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_INTEGER_ICMP(sge,Ty);
|
||||
IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
|
||||
IMPLEMENT_POINTER_ICMP(>=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
|
||||
@ -285,12 +304,29 @@ void Interpreter::visitICmpInst(ICmpInst &I) {
|
||||
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
|
||||
break
|
||||
|
||||
#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
|
||||
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
|
||||
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1, \
|
||||
Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
|
||||
break;
|
||||
|
||||
#define IMPLEMENT_VECTOR_FCMP(OP) \
|
||||
case Type::VectorTyID: \
|
||||
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
|
||||
IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
|
||||
} else { \
|
||||
IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(==, Float);
|
||||
IMPLEMENT_FCMP(==, Double);
|
||||
IMPLEMENT_VECTOR_FCMP(==);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
@ -298,17 +334,62 @@ static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
|
||||
return Dest;
|
||||
}
|
||||
|
||||
#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
|
||||
if (TY->isFloatTy()) { \
|
||||
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
|
||||
Dest.IntVal = APInt(1,false); \
|
||||
return Dest; \
|
||||
} \
|
||||
} else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
|
||||
Dest.IntVal = APInt(1,false); \
|
||||
return Dest; \
|
||||
}
|
||||
|
||||
#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
|
||||
assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
|
||||
Dest.AggregateVal.resize( X.AggregateVal.size() ); \
|
||||
for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
|
||||
if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
|
||||
Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
|
||||
else { \
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
|
||||
if (TY->isVectorTy()) \
|
||||
if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
|
||||
MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
|
||||
} else { \
|
||||
MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
|
||||
} \
|
||||
|
||||
|
||||
|
||||
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
Type *Ty)
|
||||
{
|
||||
GenericValue Dest;
|
||||
// if input is scalar value and Src1 or Src2 is NaN return false
|
||||
IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
|
||||
// if vector input detect NaNs and fill mask
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, false)
|
||||
GenericValue DestMask = Dest;
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(!=, Float);
|
||||
IMPLEMENT_FCMP(!=, Double);
|
||||
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
IMPLEMENT_VECTOR_FCMP(!=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
}
|
||||
// in vector case mask out NaN elements
|
||||
if (Ty->isVectorTy())
|
||||
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
|
||||
if (DestMask.AggregateVal[_i].IntVal == false)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,false);
|
||||
|
||||
return Dest;
|
||||
}
|
||||
|
||||
@ -318,6 +399,7 @@ static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(<=, Float);
|
||||
IMPLEMENT_FCMP(<=, Double);
|
||||
IMPLEMENT_VECTOR_FCMP(<=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
@ -331,6 +413,7 @@ static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(>=, Float);
|
||||
IMPLEMENT_FCMP(>=, Double);
|
||||
IMPLEMENT_VECTOR_FCMP(>=);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
@ -344,6 +427,7 @@ static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(<, Float);
|
||||
IMPLEMENT_FCMP(<, Double);
|
||||
IMPLEMENT_VECTOR_FCMP(<);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
@ -357,6 +441,7 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
|
||||
switch (Ty->getTypeID()) {
|
||||
IMPLEMENT_FCMP(>, Float);
|
||||
IMPLEMENT_FCMP(>, Double);
|
||||
IMPLEMENT_VECTOR_FCMP(>);
|
||||
default:
|
||||
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
@ -375,18 +460,32 @@ static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
|
||||
return Dest; \
|
||||
}
|
||||
|
||||
#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
|
||||
if (TY->isVectorTy()) { \
|
||||
GenericValue DestMask = Dest; \
|
||||
Dest = _FUNC(Src1, Src2, Ty); \
|
||||
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
|
||||
if (DestMask.AggregateVal[_i].IntVal == true) \
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,true); \
|
||||
return Dest; \
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
|
||||
return executeFCMP_OEQ(Src1, Src2, Ty);
|
||||
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
|
||||
return executeFCMP_ONE(Src1, Src2, Ty);
|
||||
}
|
||||
|
||||
@ -394,6 +493,8 @@ static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
|
||||
return executeFCMP_OLE(Src1, Src2, Ty);
|
||||
}
|
||||
|
||||
@ -401,6 +502,8 @@ static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
|
||||
return executeFCMP_OGE(Src1, Src2, Ty);
|
||||
}
|
||||
|
||||
@ -408,6 +511,8 @@ static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
|
||||
return executeFCMP_OLT(Src1, Src2, Ty);
|
||||
}
|
||||
|
||||
@ -415,33 +520,88 @@ static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
|
||||
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
|
||||
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
|
||||
return executeFCMP_OGT(Src1, Src2, Ty);
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
if (Ty->isFloatTy())
|
||||
if(Ty->isVectorTy()) {
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
|
||||
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
|
||||
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
|
||||
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,
|
||||
( (Src1.AggregateVal[_i].FloatVal ==
|
||||
Src1.AggregateVal[_i].FloatVal) &&
|
||||
(Src2.AggregateVal[_i].FloatVal ==
|
||||
Src2.AggregateVal[_i].FloatVal)));
|
||||
} else {
|
||||
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,
|
||||
( (Src1.AggregateVal[_i].DoubleVal ==
|
||||
Src1.AggregateVal[_i].DoubleVal) &&
|
||||
(Src2.AggregateVal[_i].DoubleVal ==
|
||||
Src2.AggregateVal[_i].DoubleVal)));
|
||||
}
|
||||
} else if (Ty->isFloatTy())
|
||||
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
|
||||
Src2.FloatVal == Src2.FloatVal));
|
||||
else
|
||||
else {
|
||||
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
|
||||
Src2.DoubleVal == Src2.DoubleVal));
|
||||
}
|
||||
return Dest;
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
|
||||
Type *Ty) {
|
||||
GenericValue Dest;
|
||||
if (Ty->isFloatTy())
|
||||
if(Ty->isVectorTy()) {
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
|
||||
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
|
||||
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
|
||||
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,
|
||||
( (Src1.AggregateVal[_i].FloatVal !=
|
||||
Src1.AggregateVal[_i].FloatVal) ||
|
||||
(Src2.AggregateVal[_i].FloatVal !=
|
||||
Src2.AggregateVal[_i].FloatVal)));
|
||||
} else {
|
||||
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,
|
||||
( (Src1.AggregateVal[_i].DoubleVal !=
|
||||
Src1.AggregateVal[_i].DoubleVal) ||
|
||||
(Src2.AggregateVal[_i].DoubleVal !=
|
||||
Src2.AggregateVal[_i].DoubleVal)));
|
||||
}
|
||||
} else if (Ty->isFloatTy())
|
||||
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
|
||||
Src2.FloatVal != Src2.FloatVal));
|
||||
else
|
||||
else {
|
||||
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
|
||||
Src2.DoubleVal != Src2.DoubleVal));
|
||||
}
|
||||
return Dest;
|
||||
}
|
||||
|
||||
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
|
||||
const Type *Ty, const bool val) {
|
||||
GenericValue Dest;
|
||||
if(Ty->isVectorTy()) {
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
|
||||
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
|
||||
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
|
||||
Dest.AggregateVal[_i].IntVal = APInt(1,val);
|
||||
} else {
|
||||
Dest.IntVal = APInt(1, val);
|
||||
}
|
||||
|
||||
return Dest;
|
||||
}
|
||||
|
||||
void Interpreter::visitFCmpInst(FCmpInst &I) {
|
||||
ExecutionContext &SF = ECStack.back();
|
||||
Type *Ty = I.getOperand(0)->getType();
|
||||
@ -450,8 +610,14 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
|
||||
GenericValue R; // Result
|
||||
|
||||
switch (I.getPredicate()) {
|
||||
case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
|
||||
case FCmpInst::FCMP_TRUE: R.IntVal = APInt(1,true); break;
|
||||
default:
|
||||
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
|
||||
llvm_unreachable(0);
|
||||
break;
|
||||
case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
|
||||
break;
|
||||
case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
|
||||
break;
|
||||
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
|
||||
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
|
||||
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
|
||||
@ -466,9 +632,6 @@ void Interpreter::visitFCmpInst(FCmpInst &I) {
|
||||
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
|
||||
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
|
||||
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
|
||||
default:
|
||||
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
|
||||
llvm_unreachable(0);
|
||||
}
|
||||
|
||||
SetValue(&I, R, SF);
|
||||
@ -502,16 +665,8 @@ static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
|
||||
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
|
||||
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
|
||||
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
|
||||
case FCmpInst::FCMP_FALSE: {
|
||||
GenericValue Result;
|
||||
Result.IntVal = APInt(1, false);
|
||||
return Result;
|
||||
}
|
||||
case FCmpInst::FCMP_TRUE: {
|
||||
GenericValue Result;
|
||||
Result.IntVal = APInt(1, true);
|
||||
return Result;
|
||||
}
|
||||
case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
|
||||
case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
|
||||
default:
|
||||
dbgs() << "Unhandled Cmp predicate\n";
|
||||
llvm_unreachable(0);
|
||||
@ -525,27 +680,105 @@ void Interpreter::visitBinaryOperator(BinaryOperator &I) {
|
||||
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
||||
GenericValue R; // Result
|
||||
|
||||
switch (I.getOpcode()) {
|
||||
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
|
||||
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
|
||||
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
|
||||
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
|
||||
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
|
||||
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
|
||||
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
|
||||
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
|
||||
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
|
||||
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
|
||||
default:
|
||||
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
|
||||
llvm_unreachable(0);
|
||||
}
|
||||
// First process vector operation
|
||||
if (Ty->isVectorTy()) {
|
||||
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
|
||||
R.AggregateVal.resize(Src1.AggregateVal.size());
|
||||
|
||||
// Macros to execute binary operation 'OP' over integer vectors
|
||||
#define INTEGER_VECTOR_OPERATION(OP) \
|
||||
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
|
||||
R.AggregateVal[i].IntVal = \
|
||||
Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
|
||||
|
||||
// Additional macros to execute binary operations udiv/sdiv/urem/srem since
|
||||
// they have different notation.
|
||||
#define INTEGER_VECTOR_FUNCTION(OP) \
|
||||
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
|
||||
R.AggregateVal[i].IntVal = \
|
||||
Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
|
||||
|
||||
// Macros to execute binary operation 'OP' over floating point type TY
|
||||
// (float or double) vectors
|
||||
#define FLOAT_VECTOR_FUNCTION(OP, TY) \
|
||||
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
|
||||
R.AggregateVal[i].TY = \
|
||||
Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
|
||||
|
||||
// Macros to choose appropriate TY: float or double and run operation
|
||||
// execution
|
||||
#define FLOAT_VECTOR_OP(OP) { \
|
||||
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
|
||||
FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
|
||||
else { \
|
||||
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
|
||||
FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
|
||||
else { \
|
||||
dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
|
||||
llvm_unreachable(0); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
switch(I.getOpcode()){
|
||||
default:
|
||||
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
|
||||
llvm_unreachable(0);
|
||||
break;
|
||||
case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
|
||||
case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
|
||||
case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
|
||||
case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
|
||||
case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
|
||||
case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
|
||||
case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
|
||||
case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
|
||||
case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
|
||||
case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
|
||||
case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
|
||||
case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
|
||||
case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
|
||||
case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
|
||||
case Instruction::FRem:
|
||||
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
|
||||
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
|
||||
R.AggregateVal[i].FloatVal =
|
||||
fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
|
||||
else {
|
||||
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
|
||||
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
|
||||
R.AggregateVal[i].DoubleVal =
|
||||
fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
|
||||
else {
|
||||
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
|
||||
llvm_unreachable(0);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
switch (I.getOpcode()) {
|
||||
default:
|
||||
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
|
||||
llvm_unreachable(0);
|
||||
break;
|
||||
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
|
||||
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
|
||||
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
|
||||
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
|
||||
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
|
||||
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
|
||||
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
|
||||
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
|
||||
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
|
||||
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
|
||||
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
|
||||
}
|
||||
}
|
||||
SetValue(&I, R, SF);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user