mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-18 13:34:04 +00:00
Eliminate all of the SCEV Expansion code which is really part of the
IndVars pass, not part of SCEV *analysis*. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13134 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2cdf0a7a32
commit
b06432c276
@ -33,10 +33,6 @@
|
||||
// higher-level code, such as the code that recognizes PHI nodes of various
|
||||
// types, computes the execution count of a loop, etc.
|
||||
//
|
||||
// Orthogonal to the analysis of code above, this file also implements the
|
||||
// ScalarEvolutionRewriter class, which is used to emit code that represents the
|
||||
// various recurrences present in a loop, in canonical forms.
|
||||
//
|
||||
// TODO: We should use these routines and value representations to implement
|
||||
// dependence analysis!
|
||||
//
|
||||
@ -160,13 +156,6 @@ bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
|
||||
return false;
|
||||
}
|
||||
|
||||
Value *SCEVCouldNotCompute::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void SCEVCouldNotCompute::print(std::ostream &OS) const {
|
||||
OS << "***COULDNOTCOMPUTE***";
|
||||
}
|
||||
@ -358,7 +347,7 @@ void SCEVUnknown::print(std::ostream &OS) const {
|
||||
|
||||
/// getIntegerSCEV - Given an integer or FP type, create a constant for the
|
||||
/// specified signed integer value and return a SCEV for the constant.
|
||||
static SCEVHandle getIntegerSCEV(int Val, const Type *Ty) {
|
||||
SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
|
||||
Constant *C;
|
||||
if (Val == 0)
|
||||
C = Constant::getNullValue(Ty);
|
||||
@ -393,7 +382,7 @@ static SCEVHandle getNegativeSCEV(const SCEVHandle &V) {
|
||||
if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
|
||||
return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
|
||||
|
||||
return SCEVMulExpr::get(V, getIntegerSCEV(-1, V->getType()));
|
||||
return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
|
||||
}
|
||||
|
||||
/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
|
||||
@ -438,11 +427,12 @@ static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
|
||||
|
||||
const Type *Ty = V->getType();
|
||||
if (NumSteps == 0)
|
||||
return getIntegerSCEV(1, Ty);
|
||||
return SCEVUnknown::getIntegerSCEV(1, Ty);
|
||||
|
||||
SCEVHandle Result = V;
|
||||
for (unsigned i = 1; i != NumSteps; ++i)
|
||||
Result = SCEVMulExpr::get(Result, getMinusSCEV(V, getIntegerSCEV(i, Ty)));
|
||||
Result = SCEVMulExpr::get(Result, getMinusSCEV(V,
|
||||
SCEVUnknown::getIntegerSCEV(i, Ty)));
|
||||
return Result;
|
||||
}
|
||||
|
||||
@ -465,7 +455,7 @@ SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
|
||||
SCEVHandle BC = PartialFact(It, i);
|
||||
Divisor *= i;
|
||||
SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
|
||||
getIntegerSCEV(Divisor, Ty));
|
||||
SCEVUnknown::getIntegerSCEV(Divisor,Ty));
|
||||
Result = SCEVAddExpr::get(Result, Val);
|
||||
}
|
||||
return Result;
|
||||
@ -558,7 +548,7 @@ SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
|
||||
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
|
||||
// Found a match, merge the two values into a multiply, and add any
|
||||
// remaining values to the result.
|
||||
SCEVHandle Two = getIntegerSCEV(2, Ty);
|
||||
SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
|
||||
SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
|
||||
if (Ops.size() == 2)
|
||||
return Mul;
|
||||
@ -609,7 +599,7 @@ SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
|
||||
MulOps.erase(MulOps.begin()+MulOp);
|
||||
InnerMul = SCEVMulExpr::get(MulOps);
|
||||
}
|
||||
SCEVHandle One = getIntegerSCEV(1, Ty);
|
||||
SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
|
||||
SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
|
||||
SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
|
||||
if (Ops.size() == 2) return OuterMul;
|
||||
@ -976,137 +966,6 @@ SCEVHandle SCEVUnknown::get(Value *V) {
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// Non-trivial closed-form SCEV Expanders
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
Value *SCEVTruncateExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
Value *V = SER.ExpandCodeFor(getOperand(), InsertPt);
|
||||
return new CastInst(V, getType(), "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
Value *SCEVZeroExtendExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
Value *V = SER.ExpandCodeFor(getOperand(), InsertPt,
|
||||
getOperand()->getType()->getUnsignedVersion());
|
||||
return new CastInst(V, getType(), "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
Value *SCEVAddExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
const Type *Ty = getType();
|
||||
Value *V = SER.ExpandCodeFor(getOperand(getNumOperands()-1), InsertPt, Ty);
|
||||
|
||||
// Emit a bunch of add instructions
|
||||
for (int i = getNumOperands()-2; i >= 0; --i)
|
||||
V = BinaryOperator::create(Instruction::Add, V,
|
||||
SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
|
||||
"tmp.", InsertPt);
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *SCEVMulExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
const Type *Ty = getType();
|
||||
int FirstOp = 0; // Set if we should emit a subtract.
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getOperand(0)))
|
||||
if (SC->getValue()->isAllOnesValue())
|
||||
FirstOp = 1;
|
||||
|
||||
int i = getNumOperands()-2;
|
||||
Value *V = SER.ExpandCodeFor(getOperand(i+1), InsertPt, Ty);
|
||||
|
||||
// Emit a bunch of multiply instructions
|
||||
for (; i >= FirstOp; --i)
|
||||
V = BinaryOperator::create(Instruction::Mul, V,
|
||||
SER.ExpandCodeFor(getOperand(i), InsertPt, Ty),
|
||||
"tmp.", InsertPt);
|
||||
// -1 * ... ---> 0 - ...
|
||||
if (FirstOp == 1)
|
||||
V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty), V,
|
||||
"tmp.", InsertPt);
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *SCEVUDivExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
const Type *Ty = getType();
|
||||
Value *LHS = SER.ExpandCodeFor(getLHS(), InsertPt, Ty);
|
||||
Value *RHS = SER.ExpandCodeFor(getRHS(), InsertPt, Ty);
|
||||
return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
Value *SCEVAddRecExpr::expandCodeFor(ScalarEvolutionRewriter &SER,
|
||||
Instruction *InsertPt) {
|
||||
const Type *Ty = getType();
|
||||
// We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
|
||||
assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
|
||||
|
||||
// {X,+,F} --> X + {0,+,F}
|
||||
if (!isa<SCEVConstant>(getStart()) ||
|
||||
!cast<SCEVConstant>(getStart())->getValue()->isNullValue()) {
|
||||
Value *Start = SER.ExpandCodeFor(getStart(), InsertPt, Ty);
|
||||
std::vector<SCEVHandle> NewOps(op_begin(), op_end());
|
||||
NewOps[0] = getIntegerSCEV(0, getType());
|
||||
Value *Rest = SER.ExpandCodeFor(SCEVAddRecExpr::get(NewOps, getLoop()),
|
||||
InsertPt, getType());
|
||||
|
||||
// FIXME: look for an existing add to use.
|
||||
return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
|
||||
InsertPt);
|
||||
}
|
||||
|
||||
// {0,+,1} --> Insert a canonical induction variable into the loop!
|
||||
if (getNumOperands() == 2 && getOperand(1) == getIntegerSCEV(1, getType())) {
|
||||
// Create and insert the PHI node for the induction variable in the
|
||||
// specified loop.
|
||||
BasicBlock *Header = getLoop()->getHeader();
|
||||
PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
|
||||
PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
|
||||
|
||||
pred_iterator HPI = pred_begin(Header);
|
||||
assert(HPI != pred_end(Header) && "Loop with zero preds???");
|
||||
if (!getLoop()->contains(*HPI)) ++HPI;
|
||||
assert(HPI != pred_end(Header) && getLoop()->contains(*HPI) &&
|
||||
"No backedge in loop?");
|
||||
|
||||
// Insert a unit add instruction right before the terminator corresponding
|
||||
// to the back-edge.
|
||||
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
|
||||
: (Constant*)ConstantInt::get(Ty, 1);
|
||||
Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
|
||||
"indvar.next",
|
||||
(*HPI)->getTerminator());
|
||||
|
||||
pred_iterator PI = pred_begin(Header);
|
||||
if (*PI == L->getLoopPreheader())
|
||||
++PI;
|
||||
PN->addIncoming(Add, *PI);
|
||||
return PN;
|
||||
}
|
||||
|
||||
// Get the canonical induction variable I for this loop.
|
||||
Value *I = SER.GetOrInsertCanonicalInductionVariable(getLoop(), Ty);
|
||||
|
||||
if (getNumOperands() == 2) { // {0,+,F} --> i*F
|
||||
Value *F = SER.ExpandCodeFor(getOperand(1), InsertPt, Ty);
|
||||
return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
// If this is a chain of recurrences, turn it into a closed form, using the
|
||||
// folders, then expandCodeFor the closed form. This allows the folders to
|
||||
// simplify the expression without having to build a bunch of special code
|
||||
// into this folder.
|
||||
SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
|
||||
|
||||
SCEVHandle V = evaluateAtIteration(IH);
|
||||
//std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
|
||||
|
||||
return SER.ExpandCodeFor(V, InsertPt, Ty);
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ScalarEvolutionsImpl Definition and Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -2099,7 +1958,7 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
|
||||
if (!SC->getValue()->isNullValue()) {
|
||||
std::vector<SCEVHandle> Operands(op_begin(), op_end());
|
||||
Operands[0] = getIntegerSCEV(0, SC->getType());
|
||||
Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
|
||||
SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
|
||||
if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
|
||||
return ShiftedAddRec->getNumIterationsInRange(
|
||||
@ -2348,66 +2207,3 @@ void ScalarEvolution::print(std::ostream &OS) const {
|
||||
PrintLoopInfo(OS, this, *I);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ScalarEvolutionRewriter Class Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
Value *ScalarEvolutionRewriter::
|
||||
GetOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty) {
|
||||
assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
|
||||
"Can only insert integer or floating point induction variables!");
|
||||
|
||||
// Check to see if we already inserted one.
|
||||
SCEVHandle H = SCEVAddRecExpr::get(getIntegerSCEV(0, Ty),
|
||||
getIntegerSCEV(1, Ty), L);
|
||||
return ExpandCodeFor(H, 0, Ty);
|
||||
}
|
||||
|
||||
/// ExpandCodeFor - Insert code to directly compute the specified SCEV
|
||||
/// expression into the program. The inserted code is inserted into the
|
||||
/// specified block.
|
||||
Value *ScalarEvolutionRewriter::ExpandCodeFor(SCEVHandle SH,
|
||||
Instruction *InsertPt,
|
||||
const Type *Ty) {
|
||||
std::map<SCEVHandle, Value*>::iterator ExistVal =InsertedExpressions.find(SH);
|
||||
Value *V;
|
||||
if (ExistVal != InsertedExpressions.end()) {
|
||||
V = ExistVal->second;
|
||||
} else {
|
||||
// Ask the recurrence object to expand the code for itself.
|
||||
V = SH->expandCodeFor(*this, InsertPt);
|
||||
// Cache the generated result.
|
||||
InsertedExpressions.insert(std::make_pair(SH, V));
|
||||
}
|
||||
|
||||
if (Ty == 0 || V->getType() == Ty)
|
||||
return V;
|
||||
if (Constant *C = dyn_cast<Constant>(V))
|
||||
return ConstantExpr::getCast(C, Ty);
|
||||
else if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
// Check to see if there is already a cast. If there is, use it.
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||
UI != E; ++UI) {
|
||||
if ((*UI)->getType() == Ty)
|
||||
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
|
||||
BasicBlock::iterator It = I; ++It;
|
||||
while (isa<PHINode>(It)) ++It;
|
||||
if (It != BasicBlock::iterator(CI)) {
|
||||
// Splice the cast immediately after the operand in question.
|
||||
I->getParent()->getInstList().splice(It,
|
||||
CI->getParent()->getInstList(),
|
||||
CI);
|
||||
}
|
||||
return CI;
|
||||
}
|
||||
}
|
||||
BasicBlock::iterator IP = I; ++IP;
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
|
||||
IP = II->getNormalDest()->begin();
|
||||
while (isa<PHINode>(IP)) ++IP;
|
||||
return new CastInst(V, Ty, V->getName(), IP);
|
||||
} else {
|
||||
// FIXME: check to see if there is already a cast!
|
||||
return new CastInst(V, Ty, V->getName(), InsertPt);
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user