mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-06-26 07:24:25 +00:00
Change SelectionDAG type legalization to allow BUILD_VECTOR operands to be
promoted to legal types without changing the type of the vector. This is following a suggestion from Duncan (http://lists.cs.uiuc.edu/pipermail/llvmdev/2009-February/019923.html). The transformation that used to be done during type legalization is now postponed to DAG legalization. This allows the BUILD_VECTORs to be optimized and potentially handled specially by target-specific code. It turns out that this is also consistent with an optimization done by the DAG combiner: a BUILD_VECTOR and INSERT_VECTOR_ELT may be combined by replacing one of the BUILD_VECTOR operands with the newly inserted element; but INSERT_VECTOR_ELT allows its scalar operand to be larger than the element type, with any extra high bits being implicitly truncated. The result is a BUILD_VECTOR where one of the operands has a type larger the the vector element type. Any code that operates on BUILD_VECTORs may now need to be aware of the potential type discrepancy between the vector element type and the BUILD_VECTOR operands. This patch updates all of the places that I could find to handle that case. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68996 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
@ -5483,6 +5483,41 @@ SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
|
||||
MVT OpVT = SplatValue.getValueType();
|
||||
MVT EltVT = VT.getVectorElementType();
|
||||
|
||||
// Check if the BUILD_VECTOR operands were promoted to legalize their types.
|
||||
if (OpVT != EltVT) {
|
||||
// Now that the DAG combiner and target-specific lowering have had a
|
||||
// chance to optimize/recognize the BUILD_VECTOR with promoted operands,
|
||||
// transform it so the operand types match the vector. Build a vector of
|
||||
// half the length out of elements of twice the bitwidth.
|
||||
// For example <4 x i16> -> <2 x i32>.
|
||||
MVT NewVT = MVT::getIntegerVT(2 * EltVT.getSizeInBits());
|
||||
assert(OpVT.isSimple() && NewVT.isSimple());
|
||||
SmallVector<SDValue, 16> NewElts;
|
||||
|
||||
for (unsigned i = 0; i < NumElems; i += 2) {
|
||||
// Combine two successive elements into one promoted element.
|
||||
SDValue Lo = Node->getOperand(i);
|
||||
SDValue Hi = Node->getOperand(i+1);
|
||||
if (TLI.isBigEndian())
|
||||
std::swap(Lo, Hi);
|
||||
Lo = DAG.getZeroExtendInReg(Lo, dl, EltVT);
|
||||
Hi = DAG.getNode(ISD::SHL, dl, OpVT, Hi,
|
||||
DAG.getConstant(EltVT.getSizeInBits(),
|
||||
TLI.getPointerTy()));
|
||||
NewElts.push_back(DAG.getNode(ISD::OR, dl, OpVT, Lo, Hi));
|
||||
}
|
||||
|
||||
SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
|
||||
MVT::getVectorVT(NewVT, NewElts.size()),
|
||||
&NewElts[0], NewElts.size());
|
||||
|
||||
// Recurse
|
||||
NewVec = ExpandBUILD_VECTOR(NewVec.getNode());
|
||||
|
||||
// Convert the new vector to the old vector type.
|
||||
return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewVec);
|
||||
}
|
||||
|
||||
// If the only non-undef value is the low element, turn this into a
|
||||
// SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
|
||||
bool isOnlyLowElement = true;
|
||||
|
Reference in New Issue
Block a user