enhance X86TypeInfo to include information about the encoding and

operand kind for immediates.  Use these to define a new BinOpRI
class and switch AND8/16/32ri over to it.  AND64ri32 needs some
more refactoring before it can make the switcheroo.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115752 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2010-10-06 05:55:42 +00:00
parent 994526ccd8
commit b2fc409827

View File

@ -501,6 +501,7 @@ let CodeSize = 2 in {
/// register class and preferred load to use.
class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
PatFrag loadnode, X86MemOperand memoperand,
ImmType immkind, Operand immoperand,
bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
/// VT - This is the value type itself.
ValueType VT = vt;
@ -521,6 +522,18 @@ class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
/// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
X86MemOperand MemOperand = memoperand;
/// ImmEncoding - This is the encoding of an immediate of this type. For
/// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
/// since the immediate fields of i64 instructions is a 32-bit sign extended
/// value.
ImmType ImmEncoding = immkind;
/// ImmOperand - This is the operand kind of an immediate of this type. For
/// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
/// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
/// extended value.
Operand ImmOperand = immoperand;
/// HasOddOpcode - This bit is true if the instruction should have an odd (as
/// opposed to even) opcode. Operations on i8 are usually even, operations on
/// other datatypes are odd.
@ -535,10 +548,14 @@ class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
bit HasREX_WPrefix = hasREX_WPrefix;
}
def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , 0, 0, 0>;
def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, 1, 1, 0>;
def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, 1, 0, 0>;
def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, 1, 0, 1>;
def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , Imm8 , i8imm ,
0, 0, 0>;
def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, Imm16, i16imm,
1, 1, 0>;
def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, Imm32, i32imm,
1, 0, 0>;
def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, Imm32, i64i32imm,
1, 0, 1>;
/// ITy - This instruction base class takes the type info for the instruction.
/// Using this, it:
@ -548,7 +565,7 @@ def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, 1, 0, 1>;
/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
/// or 1 (for i16,i32,i64 operations).
class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
string mnemonic, string args, list<dag> pattern>
: I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
@ -588,6 +605,16 @@ class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
SDNode opnode, Format f>
: ITy<opcode, f, typeinfo,
(outs typeinfo.RegClass:$dst),
(ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
mnemonic, "{$src2, $dst|$dst, $src2}",
[(set typeinfo.RegClass:$dst, EFLAGS,
(opnode typeinfo.RegClass:$src1, imm:$src2))]> {
let ImmT = typeinfo.ImmEncoding;
}
@ -616,21 +643,10 @@ def AND16rm : BinOpRM<0x22, "and", Xi16, X86and_flag>;
def AND32rm : BinOpRM<0x22, "and", Xi32, X86and_flag>;
def AND64rm : BinOpRM<0x22, "and", Xi64, X86and_flag>;
def AND8ri : Ii8<0x80, MRM4r,
(outs GR8 :$dst), (ins GR8 :$src1, i8imm :$src2),
"and{b}\t{$src2, $dst|$dst, $src2}",
[(set GR8:$dst, EFLAGS, (X86and_flag GR8:$src1,
imm:$src2))]>;
def AND16ri : Ii16<0x81, MRM4r,
(outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
"and{w}\t{$src2, $dst|$dst, $src2}",
[(set GR16:$dst, EFLAGS, (X86and_flag GR16:$src1,
imm:$src2))]>, OpSize;
def AND32ri : Ii32<0x81, MRM4r,
(outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
"and{l}\t{$src2, $dst|$dst, $src2}",
[(set GR32:$dst, EFLAGS, (X86and_flag GR32:$src1,
imm:$src2))]>;
def AND8ri : BinOpRI<0x80, "and", Xi8 , X86and_flag, MRM4r>;
def AND16ri : BinOpRI<0x80, "and", Xi16, X86and_flag, MRM4r>;
def AND32ri : BinOpRI<0x80, "and", Xi32, X86and_flag, MRM4r>;
def AND64ri32 : RIi32<0x81, MRM4r,
(outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
"and{q}\t{$src2, $dst|$dst, $src2}",