mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-01 03:33:42 +00:00
[NFC] Refactor identification of reductions as common utility function.
This patch refactors reduction identification code out of LoopVectorizer and exposes them as common utilities. No functional change. Review: http://reviews.llvm.org/D9046 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235284 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6809724935
commit
b2fd516ed9
@ -16,6 +16,7 @@
|
||||
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
|
||||
namespace llvm {
|
||||
class AliasAnalysis;
|
||||
@ -42,6 +43,132 @@ struct LICMSafetyInfo {
|
||||
{}
|
||||
};
|
||||
|
||||
/// This POD struct holds information about a potential reduction operation.
|
||||
class ReductionInstDesc {
|
||||
|
||||
public:
|
||||
// This enum represents the kind of minmax reduction.
|
||||
enum MinMaxReductionKind {
|
||||
MRK_Invalid,
|
||||
MRK_UIntMin,
|
||||
MRK_UIntMax,
|
||||
MRK_SIntMin,
|
||||
MRK_SIntMax,
|
||||
MRK_FloatMin,
|
||||
MRK_FloatMax
|
||||
};
|
||||
ReductionInstDesc(bool IsRedux, Instruction *I)
|
||||
: IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
|
||||
|
||||
ReductionInstDesc(Instruction *I, MinMaxReductionKind K)
|
||||
: IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
|
||||
|
||||
bool isReduction() { return IsReduction; }
|
||||
|
||||
MinMaxReductionKind getMinMaxKind() { return MinMaxKind; }
|
||||
|
||||
private:
|
||||
// Is this instruction a reduction candidate.
|
||||
bool IsReduction;
|
||||
// The last instruction in a min/max pattern (select of the select(icmp())
|
||||
// pattern), or the current reduction instruction otherwise.
|
||||
Instruction *PatternLastInst;
|
||||
// If this is a min/max pattern the comparison predicate.
|
||||
MinMaxReductionKind MinMaxKind;
|
||||
};
|
||||
|
||||
/// This struct holds information about reduction variables.
|
||||
class ReductionDescriptor {
|
||||
|
||||
public:
|
||||
/// This enum represents the kinds of reductions that we support.
|
||||
enum ReductionKind {
|
||||
RK_NoReduction, ///< Not a reduction.
|
||||
RK_IntegerAdd, ///< Sum of integers.
|
||||
RK_IntegerMult, ///< Product of integers.
|
||||
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
|
||||
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
|
||||
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
|
||||
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
|
||||
RK_FloatAdd, ///< Sum of floats.
|
||||
RK_FloatMult, ///< Product of floats.
|
||||
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
|
||||
};
|
||||
|
||||
ReductionDescriptor()
|
||||
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoReduction),
|
||||
MinMaxKind(ReductionInstDesc::MRK_Invalid) {}
|
||||
|
||||
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
|
||||
ReductionInstDesc::MinMaxReductionKind MK)
|
||||
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
|
||||
|
||||
/// Returns a struct describing if the instruction 'I' can be a reduction
|
||||
/// variable of type 'Kind'. If the reduction is a min/max pattern of
|
||||
/// select(icmp()) this function advances the instruction pointer 'I' from the
|
||||
/// compare instruction to the select instruction and stores this pointer in
|
||||
/// 'PatternLastInst' member of the returned struct.
|
||||
static ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
|
||||
ReductionInstDesc &Prev,
|
||||
bool HasFunNoNaNAttr);
|
||||
|
||||
/// Returns true if instuction I has multiple uses in Insts
|
||||
static bool hasMultipleUsesOf(Instruction *I,
|
||||
SmallPtrSetImpl<Instruction *> &Insts);
|
||||
|
||||
/// Returns true if all uses of the instruction I is within the Set.
|
||||
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
|
||||
|
||||
/// Returns a struct describing if the instruction if the instruction is a
|
||||
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
|
||||
/// or max(X, Y).
|
||||
static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
|
||||
ReductionInstDesc &Prev);
|
||||
|
||||
/// Returns identity corresponding to the ReductionKind.
|
||||
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
|
||||
|
||||
/// Returns the opcode of binary operation corresponding to the ReductionKind.
|
||||
static unsigned getReductionBinOp(ReductionKind Kind);
|
||||
|
||||
/// Returns a Min/Max operation corresponding to MinMaxReductionKind.
|
||||
static Value *createMinMaxOp(IRBuilder<> &Builder,
|
||||
ReductionInstDesc::MinMaxReductionKind RK,
|
||||
Value *Left, Value *Right);
|
||||
|
||||
/// Returns true if Phi is a reduction of type Kind and adds it to the
|
||||
/// ReductionDescriptor.
|
||||
static bool AddReductionVar(PHINode *Phi, ReductionKind Kind, Loop *TheLoop,
|
||||
bool HasFunNoNaNAttr,
|
||||
ReductionDescriptor &RedDes);
|
||||
|
||||
/// Returns true if Phi is a reduction in TheLoop. The ReductionDescriptor is
|
||||
/// returned in RedDes.
|
||||
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
|
||||
ReductionDescriptor &RedDes);
|
||||
|
||||
ReductionKind getReductionKind() { return Kind; }
|
||||
|
||||
ReductionInstDesc::MinMaxReductionKind getMinMaxReductionKind() {
|
||||
return MinMaxKind;
|
||||
}
|
||||
|
||||
TrackingVH<Value> getReductionStartValue() { return StartValue; }
|
||||
|
||||
Instruction *getLoopExitInstr() { return LoopExitInstr; }
|
||||
|
||||
private:
|
||||
// The starting value of the reduction.
|
||||
// It does not have to be zero!
|
||||
TrackingVH<Value> StartValue;
|
||||
// The instruction who's value is used outside the loop.
|
||||
Instruction *LoopExitInstr;
|
||||
// The kind of the reduction.
|
||||
ReductionKind Kind;
|
||||
// If this a min/max reduction the kind of reduction.
|
||||
ReductionInstDesc::MinMaxReductionKind MinMaxKind;
|
||||
};
|
||||
|
||||
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
|
||||
|
||||
/// \brief Simplify each loop in a loop nest recursively.
|
||||
|
@ -21,6 +21,7 @@ add_llvm_library(LLVMTransformUtils
|
||||
LoopSimplify.cpp
|
||||
LoopUnroll.cpp
|
||||
LoopUnrollRuntime.cpp
|
||||
LoopUtils.cpp
|
||||
LowerInvoke.cpp
|
||||
LowerSwitch.cpp
|
||||
Mem2Reg.cpp
|
||||
|
453
lib/Transforms/Utils/LoopUtils.cpp
Normal file
453
lib/Transforms/Utils/LoopUtils.cpp
Normal file
@ -0,0 +1,453 @@
|
||||
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines common loop utility functions.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
#include "llvm/IR/ValueHandle.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
|
||||
using namespace llvm;
|
||||
using namespace llvm::PatternMatch;
|
||||
|
||||
#define DEBUG_TYPE "loop-utils"
|
||||
|
||||
bool ReductionDescriptor::areAllUsesIn(Instruction *I,
|
||||
SmallPtrSetImpl<Instruction *> &Set) {
|
||||
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
|
||||
if (!Set.count(dyn_cast<Instruction>(*Use)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
|
||||
Loop *TheLoop, bool HasFunNoNaNAttr,
|
||||
ReductionDescriptor &RedDes) {
|
||||
if (Phi->getNumIncomingValues() != 2)
|
||||
return false;
|
||||
|
||||
// Reduction variables are only found in the loop header block.
|
||||
if (Phi->getParent() != TheLoop->getHeader())
|
||||
return false;
|
||||
|
||||
// Obtain the reduction start value from the value that comes from the loop
|
||||
// preheader.
|
||||
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
|
||||
|
||||
// ExitInstruction is the single value which is used outside the loop.
|
||||
// We only allow for a single reduction value to be used outside the loop.
|
||||
// This includes users of the reduction, variables (which form a cycle
|
||||
// which ends in the phi node).
|
||||
Instruction *ExitInstruction = nullptr;
|
||||
// Indicates that we found a reduction operation in our scan.
|
||||
bool FoundReduxOp = false;
|
||||
|
||||
// We start with the PHI node and scan for all of the users of this
|
||||
// instruction. All users must be instructions that can be used as reduction
|
||||
// variables (such as ADD). We must have a single out-of-block user. The cycle
|
||||
// must include the original PHI.
|
||||
bool FoundStartPHI = false;
|
||||
|
||||
// To recognize min/max patterns formed by a icmp select sequence, we store
|
||||
// the number of instruction we saw from the recognized min/max pattern,
|
||||
// to make sure we only see exactly the two instructions.
|
||||
unsigned NumCmpSelectPatternInst = 0;
|
||||
ReductionInstDesc ReduxDesc(false, nullptr);
|
||||
|
||||
SmallPtrSet<Instruction *, 8> VisitedInsts;
|
||||
SmallVector<Instruction *, 8> Worklist;
|
||||
Worklist.push_back(Phi);
|
||||
VisitedInsts.insert(Phi);
|
||||
|
||||
// A value in the reduction can be used:
|
||||
// - By the reduction:
|
||||
// - Reduction operation:
|
||||
// - One use of reduction value (safe).
|
||||
// - Multiple use of reduction value (not safe).
|
||||
// - PHI:
|
||||
// - All uses of the PHI must be the reduction (safe).
|
||||
// - Otherwise, not safe.
|
||||
// - By one instruction outside of the loop (safe).
|
||||
// - By further instructions outside of the loop (not safe).
|
||||
// - By an instruction that is not part of the reduction (not safe).
|
||||
// This is either:
|
||||
// * An instruction type other than PHI or the reduction operation.
|
||||
// * A PHI in the header other than the initial PHI.
|
||||
while (!Worklist.empty()) {
|
||||
Instruction *Cur = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
// No Users.
|
||||
// If the instruction has no users then this is a broken chain and can't be
|
||||
// a reduction variable.
|
||||
if (Cur->use_empty())
|
||||
return false;
|
||||
|
||||
bool IsAPhi = isa<PHINode>(Cur);
|
||||
|
||||
// A header PHI use other than the original PHI.
|
||||
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
|
||||
return false;
|
||||
|
||||
// Reductions of instructions such as Div, and Sub is only possible if the
|
||||
// LHS is the reduction variable.
|
||||
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
|
||||
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
|
||||
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
|
||||
return false;
|
||||
|
||||
// Any reduction instruction must be of one of the allowed kinds.
|
||||
ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
|
||||
if (!ReduxDesc.isReduction())
|
||||
return false;
|
||||
|
||||
// A reduction operation must only have one use of the reduction value.
|
||||
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
|
||||
hasMultipleUsesOf(Cur, VisitedInsts))
|
||||
return false;
|
||||
|
||||
// All inputs to a PHI node must be a reduction value.
|
||||
if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
|
||||
return false;
|
||||
|
||||
if (Kind == RK_IntegerMinMax &&
|
||||
(isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
|
||||
++NumCmpSelectPatternInst;
|
||||
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
|
||||
++NumCmpSelectPatternInst;
|
||||
|
||||
// Check whether we found a reduction operator.
|
||||
FoundReduxOp |= !IsAPhi;
|
||||
|
||||
// Process users of current instruction. Push non-PHI nodes after PHI nodes
|
||||
// onto the stack. This way we are going to have seen all inputs to PHI
|
||||
// nodes once we get to them.
|
||||
SmallVector<Instruction *, 8> NonPHIs;
|
||||
SmallVector<Instruction *, 8> PHIs;
|
||||
for (User *U : Cur->users()) {
|
||||
Instruction *UI = cast<Instruction>(U);
|
||||
|
||||
// Check if we found the exit user.
|
||||
BasicBlock *Parent = UI->getParent();
|
||||
if (!TheLoop->contains(Parent)) {
|
||||
// Exit if you find multiple outside users or if the header phi node is
|
||||
// being used. In this case the user uses the value of the previous
|
||||
// iteration, in which case we would loose "VF-1" iterations of the
|
||||
// reduction operation if we vectorize.
|
||||
if (ExitInstruction != nullptr || Cur == Phi)
|
||||
return false;
|
||||
|
||||
// The instruction used by an outside user must be the last instruction
|
||||
// before we feed back to the reduction phi. Otherwise, we loose VF-1
|
||||
// operations on the value.
|
||||
if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
|
||||
return false;
|
||||
|
||||
ExitInstruction = Cur;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Process instructions only once (termination). Each reduction cycle
|
||||
// value must only be used once, except by phi nodes and min/max
|
||||
// reductions which are represented as a cmp followed by a select.
|
||||
ReductionInstDesc IgnoredVal(false, nullptr);
|
||||
if (VisitedInsts.insert(UI).second) {
|
||||
if (isa<PHINode>(UI))
|
||||
PHIs.push_back(UI);
|
||||
else
|
||||
NonPHIs.push_back(UI);
|
||||
} else if (!isa<PHINode>(UI) &&
|
||||
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
|
||||
!isa<SelectInst>(UI)) ||
|
||||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
|
||||
return false;
|
||||
|
||||
// Remember that we completed the cycle.
|
||||
if (UI == Phi)
|
||||
FoundStartPHI = true;
|
||||
}
|
||||
Worklist.append(PHIs.begin(), PHIs.end());
|
||||
Worklist.append(NonPHIs.begin(), NonPHIs.end());
|
||||
}
|
||||
|
||||
// This means we have seen one but not the other instruction of the
|
||||
// pattern or more than just a select and cmp.
|
||||
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
|
||||
NumCmpSelectPatternInst != 2)
|
||||
return false;
|
||||
|
||||
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
|
||||
return false;
|
||||
|
||||
// We found a reduction var if we have reached the original phi node and we
|
||||
// only have a single instruction with out-of-loop users.
|
||||
|
||||
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
|
||||
// is saved as part of the ReductionDescriptor.
|
||||
|
||||
// Save the description of this reduction variable.
|
||||
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
|
||||
ReduxDesc.getMinMaxKind());
|
||||
|
||||
RedDes = RD;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
|
||||
/// pattern corresponding to a min(X, Y) or max(X, Y).
|
||||
ReductionInstDesc
|
||||
ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
|
||||
ReductionInstDesc &Prev) {
|
||||
|
||||
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
|
||||
"Expect a select instruction");
|
||||
Instruction *Cmp = nullptr;
|
||||
SelectInst *Select = nullptr;
|
||||
|
||||
// We must handle the select(cmp()) as a single instruction. Advance to the
|
||||
// select.
|
||||
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
|
||||
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
|
||||
return ReductionInstDesc(false, I);
|
||||
return ReductionInstDesc(Select, Prev.getMinMaxKind());
|
||||
}
|
||||
|
||||
// Only handle single use cases for now.
|
||||
if (!(Select = dyn_cast<SelectInst>(I)))
|
||||
return ReductionInstDesc(false, I);
|
||||
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
|
||||
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
|
||||
return ReductionInstDesc(false, I);
|
||||
if (!Cmp->hasOneUse())
|
||||
return ReductionInstDesc(false, I);
|
||||
|
||||
Value *CmpLeft;
|
||||
Value *CmpRight;
|
||||
|
||||
// Look for a min/max pattern.
|
||||
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
|
||||
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
|
||||
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
|
||||
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
|
||||
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
|
||||
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
|
||||
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
|
||||
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
|
||||
|
||||
return ReductionInstDesc(false, I);
|
||||
}
|
||||
|
||||
ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
|
||||
ReductionKind Kind,
|
||||
ReductionInstDesc &Prev,
|
||||
bool HasFunNoNaNAttr) {
|
||||
bool FP = I->getType()->isFloatingPointTy();
|
||||
bool FastMath = FP && I->hasUnsafeAlgebra();
|
||||
switch (I->getOpcode()) {
|
||||
default:
|
||||
return ReductionInstDesc(false, I);
|
||||
case Instruction::PHI:
|
||||
if (FP &&
|
||||
(Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
|
||||
return ReductionInstDesc(false, I);
|
||||
return ReductionInstDesc(I, Prev.getMinMaxKind());
|
||||
case Instruction::Sub:
|
||||
case Instruction::Add:
|
||||
return ReductionInstDesc(Kind == RK_IntegerAdd, I);
|
||||
case Instruction::Mul:
|
||||
return ReductionInstDesc(Kind == RK_IntegerMult, I);
|
||||
case Instruction::And:
|
||||
return ReductionInstDesc(Kind == RK_IntegerAnd, I);
|
||||
case Instruction::Or:
|
||||
return ReductionInstDesc(Kind == RK_IntegerOr, I);
|
||||
case Instruction::Xor:
|
||||
return ReductionInstDesc(Kind == RK_IntegerXor, I);
|
||||
case Instruction::FMul:
|
||||
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
|
||||
case Instruction::FSub:
|
||||
case Instruction::FAdd:
|
||||
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
|
||||
case Instruction::FCmp:
|
||||
case Instruction::ICmp:
|
||||
case Instruction::Select:
|
||||
if (Kind != RK_IntegerMinMax &&
|
||||
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
|
||||
return ReductionInstDesc(false, I);
|
||||
return isMinMaxSelectCmpPattern(I, Prev);
|
||||
}
|
||||
}
|
||||
|
||||
bool ReductionDescriptor::hasMultipleUsesOf(
|
||||
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
|
||||
unsigned NumUses = 0;
|
||||
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
|
||||
++Use) {
|
||||
if (Insts.count(dyn_cast<Instruction>(*Use)))
|
||||
++NumUses;
|
||||
if (NumUses > 1)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
|
||||
ReductionDescriptor &RedDes) {
|
||||
|
||||
bool HasFunNoNaNAttr = false;
|
||||
BasicBlock *Header = TheLoop->getHeader();
|
||||
Function &F = *Header->getParent();
|
||||
if (F.hasFnAttribute("no-nans-fp-math"))
|
||||
HasFunNoNaNAttr =
|
||||
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
|
||||
|
||||
if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
|
||||
RedDes)) {
|
||||
DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
|
||||
DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
|
||||
return true;
|
||||
}
|
||||
// Not a reduction of known type.
|
||||
return false;
|
||||
}
|
||||
|
||||
/// This function returns the identity element (or neutral element) for
|
||||
/// the operation K.
|
||||
Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
|
||||
switch (K) {
|
||||
case RK_IntegerXor:
|
||||
case RK_IntegerAdd:
|
||||
case RK_IntegerOr:
|
||||
// Adding, Xoring, Oring zero to a number does not change it.
|
||||
return ConstantInt::get(Tp, 0);
|
||||
case RK_IntegerMult:
|
||||
// Multiplying a number by 1 does not change it.
|
||||
return ConstantInt::get(Tp, 1);
|
||||
case RK_IntegerAnd:
|
||||
// AND-ing a number with an all-1 value does not change it.
|
||||
return ConstantInt::get(Tp, -1, true);
|
||||
case RK_FloatMult:
|
||||
// Multiplying a number by 1 does not change it.
|
||||
return ConstantFP::get(Tp, 1.0L);
|
||||
case RK_FloatAdd:
|
||||
// Adding zero to a number does not change it.
|
||||
return ConstantFP::get(Tp, 0.0L);
|
||||
default:
|
||||
llvm_unreachable("Unknown reduction kind");
|
||||
}
|
||||
}
|
||||
|
||||
/// This function translates the reduction kind to an LLVM binary operator.
|
||||
unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
|
||||
switch (Kind) {
|
||||
case RK_IntegerAdd:
|
||||
return Instruction::Add;
|
||||
case RK_IntegerMult:
|
||||
return Instruction::Mul;
|
||||
case RK_IntegerOr:
|
||||
return Instruction::Or;
|
||||
case RK_IntegerAnd:
|
||||
return Instruction::And;
|
||||
case RK_IntegerXor:
|
||||
return Instruction::Xor;
|
||||
case RK_FloatMult:
|
||||
return Instruction::FMul;
|
||||
case RK_FloatAdd:
|
||||
return Instruction::FAdd;
|
||||
case RK_IntegerMinMax:
|
||||
return Instruction::ICmp;
|
||||
case RK_FloatMinMax:
|
||||
return Instruction::FCmp;
|
||||
default:
|
||||
llvm_unreachable("Unknown reduction operation");
|
||||
}
|
||||
}
|
||||
|
||||
Value *
|
||||
ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
|
||||
ReductionInstDesc::MinMaxReductionKind RK,
|
||||
Value *Left, Value *Right) {
|
||||
CmpInst::Predicate P = CmpInst::ICMP_NE;
|
||||
switch (RK) {
|
||||
default:
|
||||
llvm_unreachable("Unknown min/max reduction kind");
|
||||
case ReductionInstDesc::MRK_UIntMin:
|
||||
P = CmpInst::ICMP_ULT;
|
||||
break;
|
||||
case ReductionInstDesc::MRK_UIntMax:
|
||||
P = CmpInst::ICMP_UGT;
|
||||
break;
|
||||
case ReductionInstDesc::MRK_SIntMin:
|
||||
P = CmpInst::ICMP_SLT;
|
||||
break;
|
||||
case ReductionInstDesc::MRK_SIntMax:
|
||||
P = CmpInst::ICMP_SGT;
|
||||
break;
|
||||
case ReductionInstDesc::MRK_FloatMin:
|
||||
P = CmpInst::FCMP_OLT;
|
||||
break;
|
||||
case ReductionInstDesc::MRK_FloatMax:
|
||||
P = CmpInst::FCMP_OGT;
|
||||
break;
|
||||
}
|
||||
|
||||
Value *Cmp;
|
||||
if (RK == ReductionInstDesc::MRK_FloatMin ||
|
||||
RK == ReductionInstDesc::MRK_FloatMax)
|
||||
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
|
||||
else
|
||||
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
|
||||
|
||||
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
|
||||
return Select;
|
||||
}
|
@ -568,20 +568,6 @@ public:
|
||||
TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), Induction(nullptr),
|
||||
WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
|
||||
|
||||
/// This enum represents the kinds of reductions that we support.
|
||||
enum ReductionKind {
|
||||
RK_NoReduction, ///< Not a reduction.
|
||||
RK_IntegerAdd, ///< Sum of integers.
|
||||
RK_IntegerMult, ///< Product of integers.
|
||||
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
|
||||
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
|
||||
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
|
||||
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
|
||||
RK_FloatAdd, ///< Sum of floats.
|
||||
RK_FloatMult, ///< Product of floats.
|
||||
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
|
||||
};
|
||||
|
||||
/// This enum represents the kinds of inductions that we support.
|
||||
enum InductionKind {
|
||||
IK_NoInduction, ///< Not an induction variable.
|
||||
@ -589,54 +575,6 @@ public:
|
||||
IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem).
|
||||
};
|
||||
|
||||
// This enum represents the kind of minmax reduction.
|
||||
enum MinMaxReductionKind {
|
||||
MRK_Invalid,
|
||||
MRK_UIntMin,
|
||||
MRK_UIntMax,
|
||||
MRK_SIntMin,
|
||||
MRK_SIntMax,
|
||||
MRK_FloatMin,
|
||||
MRK_FloatMax
|
||||
};
|
||||
|
||||
/// This struct holds information about reduction variables.
|
||||
struct ReductionDescriptor {
|
||||
ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
|
||||
Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
|
||||
|
||||
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
|
||||
MinMaxReductionKind MK)
|
||||
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
|
||||
|
||||
// The starting value of the reduction.
|
||||
// It does not have to be zero!
|
||||
TrackingVH<Value> StartValue;
|
||||
// The instruction who's value is used outside the loop.
|
||||
Instruction *LoopExitInstr;
|
||||
// The kind of the reduction.
|
||||
ReductionKind Kind;
|
||||
// If this a min/max reduction the kind of reduction.
|
||||
MinMaxReductionKind MinMaxKind;
|
||||
};
|
||||
|
||||
/// This POD struct holds information about a potential reduction operation.
|
||||
struct ReductionInstDesc {
|
||||
ReductionInstDesc(bool IsRedux, Instruction *I) :
|
||||
IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
|
||||
|
||||
ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
|
||||
IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
|
||||
|
||||
// Is this instruction a reduction candidate.
|
||||
bool IsReduction;
|
||||
// The last instruction in a min/max pattern (select of the select(icmp())
|
||||
// pattern), or the current reduction instruction otherwise.
|
||||
Instruction *PatternLastInst;
|
||||
// If this is a min/max pattern the comparison predicate.
|
||||
MinMaxReductionKind MinMaxKind;
|
||||
};
|
||||
|
||||
/// A struct for saving information about induction variables.
|
||||
struct InductionInfo {
|
||||
InductionInfo(Value *Start, InductionKind K, ConstantInt *Step)
|
||||
@ -759,10 +697,6 @@ public:
|
||||
return LAI;
|
||||
}
|
||||
|
||||
/// This function returns the identity element (or neutral element) for
|
||||
/// the operation K.
|
||||
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
|
||||
|
||||
unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
|
||||
|
||||
bool hasStride(Value *V) { return StrideSet.count(V); }
|
||||
@ -820,20 +754,6 @@ private:
|
||||
/// and we know that we can read from them without segfault.
|
||||
bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
|
||||
|
||||
/// Returns True, if 'Phi' is the kind of reduction variable for type
|
||||
/// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
|
||||
bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
|
||||
/// Returns a struct describing if the instruction 'I' can be a reduction
|
||||
/// variable of type 'Kind'. If the reduction is a min/max pattern of
|
||||
/// select(icmp()) this function advances the instruction pointer 'I' from the
|
||||
/// compare instruction to the select instruction and stores this pointer in
|
||||
/// 'PatternLastInst' member of the returned struct.
|
||||
ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
|
||||
ReductionInstDesc &Desc);
|
||||
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
|
||||
/// pattern corresponding to a min(X, Y) or max(X, Y).
|
||||
static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
|
||||
ReductionInstDesc &Prev);
|
||||
/// Returns the induction kind of Phi and record the step. This function may
|
||||
/// return NoInduction if the PHI is not an induction variable.
|
||||
InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue);
|
||||
@ -2469,98 +2389,6 @@ void InnerLoopVectorizer::createEmptyLoop() {
|
||||
Hints.setAlreadyVectorized();
|
||||
}
|
||||
|
||||
/// This function returns the identity element (or neutral element) for
|
||||
/// the operation K.
|
||||
Constant*
|
||||
LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
|
||||
switch (K) {
|
||||
case RK_IntegerXor:
|
||||
case RK_IntegerAdd:
|
||||
case RK_IntegerOr:
|
||||
// Adding, Xoring, Oring zero to a number does not change it.
|
||||
return ConstantInt::get(Tp, 0);
|
||||
case RK_IntegerMult:
|
||||
// Multiplying a number by 1 does not change it.
|
||||
return ConstantInt::get(Tp, 1);
|
||||
case RK_IntegerAnd:
|
||||
// AND-ing a number with an all-1 value does not change it.
|
||||
return ConstantInt::get(Tp, -1, true);
|
||||
case RK_FloatMult:
|
||||
// Multiplying a number by 1 does not change it.
|
||||
return ConstantFP::get(Tp, 1.0L);
|
||||
case RK_FloatAdd:
|
||||
// Adding zero to a number does not change it.
|
||||
return ConstantFP::get(Tp, 0.0L);
|
||||
default:
|
||||
llvm_unreachable("Unknown reduction kind");
|
||||
}
|
||||
}
|
||||
|
||||
/// This function translates the reduction kind to an LLVM binary operator.
|
||||
static unsigned
|
||||
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
|
||||
switch (Kind) {
|
||||
case LoopVectorizationLegality::RK_IntegerAdd:
|
||||
return Instruction::Add;
|
||||
case LoopVectorizationLegality::RK_IntegerMult:
|
||||
return Instruction::Mul;
|
||||
case LoopVectorizationLegality::RK_IntegerOr:
|
||||
return Instruction::Or;
|
||||
case LoopVectorizationLegality::RK_IntegerAnd:
|
||||
return Instruction::And;
|
||||
case LoopVectorizationLegality::RK_IntegerXor:
|
||||
return Instruction::Xor;
|
||||
case LoopVectorizationLegality::RK_FloatMult:
|
||||
return Instruction::FMul;
|
||||
case LoopVectorizationLegality::RK_FloatAdd:
|
||||
return Instruction::FAdd;
|
||||
case LoopVectorizationLegality::RK_IntegerMinMax:
|
||||
return Instruction::ICmp;
|
||||
case LoopVectorizationLegality::RK_FloatMinMax:
|
||||
return Instruction::FCmp;
|
||||
default:
|
||||
llvm_unreachable("Unknown reduction operation");
|
||||
}
|
||||
}
|
||||
|
||||
static Value *createMinMaxOp(IRBuilder<> &Builder,
|
||||
LoopVectorizationLegality::MinMaxReductionKind RK,
|
||||
Value *Left, Value *Right) {
|
||||
CmpInst::Predicate P = CmpInst::ICMP_NE;
|
||||
switch (RK) {
|
||||
default:
|
||||
llvm_unreachable("Unknown min/max reduction kind");
|
||||
case LoopVectorizationLegality::MRK_UIntMin:
|
||||
P = CmpInst::ICMP_ULT;
|
||||
break;
|
||||
case LoopVectorizationLegality::MRK_UIntMax:
|
||||
P = CmpInst::ICMP_UGT;
|
||||
break;
|
||||
case LoopVectorizationLegality::MRK_SIntMin:
|
||||
P = CmpInst::ICMP_SLT;
|
||||
break;
|
||||
case LoopVectorizationLegality::MRK_SIntMax:
|
||||
P = CmpInst::ICMP_SGT;
|
||||
break;
|
||||
case LoopVectorizationLegality::MRK_FloatMin:
|
||||
P = CmpInst::FCMP_OLT;
|
||||
break;
|
||||
case LoopVectorizationLegality::MRK_FloatMax:
|
||||
P = CmpInst::FCMP_OGT;
|
||||
break;
|
||||
}
|
||||
|
||||
Value *Cmp;
|
||||
if (RK == LoopVectorizationLegality::MRK_FloatMin ||
|
||||
RK == LoopVectorizationLegality::MRK_FloatMax)
|
||||
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
|
||||
else
|
||||
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
|
||||
|
||||
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
|
||||
return Select;
|
||||
}
|
||||
|
||||
namespace {
|
||||
struct CSEDenseMapInfo {
|
||||
static bool canHandle(Instruction *I) {
|
||||
@ -2772,10 +2600,14 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
// Find the reduction variable descriptor.
|
||||
assert(Legal->getReductionVars()->count(RdxPhi) &&
|
||||
"Unable to find the reduction variable");
|
||||
LoopVectorizationLegality::ReductionDescriptor RdxDesc =
|
||||
(*Legal->getReductionVars())[RdxPhi];
|
||||
ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
|
||||
|
||||
setDebugLocFromInst(Builder, RdxDesc.StartValue);
|
||||
ReductionDescriptor::ReductionKind RK = RdxDesc.getReductionKind();
|
||||
TrackingVH<Value> ReductionStartValue = RdxDesc.getReductionStartValue();
|
||||
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
|
||||
ReductionInstDesc::MinMaxReductionKind MinMaxKind =
|
||||
RdxDesc.getMinMaxReductionKind();
|
||||
setDebugLocFromInst(Builder, ReductionStartValue);
|
||||
|
||||
// We need to generate a reduction vector from the incoming scalar.
|
||||
// To do so, we need to generate the 'identity' vector and override
|
||||
@ -2784,40 +2616,38 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
|
||||
|
||||
// This is the vector-clone of the value that leaves the loop.
|
||||
VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
|
||||
VectorParts &VectorExit = getVectorValue(LoopExitInst);
|
||||
Type *VecTy = VectorExit[0]->getType();
|
||||
|
||||
// Find the reduction identity variable. Zero for addition, or, xor,
|
||||
// one for multiplication, -1 for And.
|
||||
Value *Identity;
|
||||
Value *VectorStart;
|
||||
if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
|
||||
RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
|
||||
if (RK == ReductionDescriptor::RK_IntegerMinMax ||
|
||||
RK == ReductionDescriptor::RK_FloatMinMax) {
|
||||
// MinMax reduction have the start value as their identify.
|
||||
if (VF == 1) {
|
||||
VectorStart = Identity = RdxDesc.StartValue;
|
||||
VectorStart = Identity = ReductionStartValue;
|
||||
} else {
|
||||
VectorStart = Identity = Builder.CreateVectorSplat(VF,
|
||||
RdxDesc.StartValue,
|
||||
"minmax.ident");
|
||||
VectorStart = Identity =
|
||||
Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
|
||||
}
|
||||
} else {
|
||||
// Handle other reduction kinds:
|
||||
Constant *Iden =
|
||||
LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
|
||||
VecTy->getScalarType());
|
||||
ReductionDescriptor::getReductionIdentity(RK, VecTy->getScalarType());
|
||||
if (VF == 1) {
|
||||
Identity = Iden;
|
||||
// This vector is the Identity vector where the first element is the
|
||||
// incoming scalar reduction.
|
||||
VectorStart = RdxDesc.StartValue;
|
||||
VectorStart = ReductionStartValue;
|
||||
} else {
|
||||
Identity = ConstantVector::getSplat(VF, Iden);
|
||||
|
||||
// This vector is the Identity vector where the first element is the
|
||||
// incoming scalar reduction.
|
||||
VectorStart = Builder.CreateInsertElement(Identity,
|
||||
RdxDesc.StartValue, Zero);
|
||||
VectorStart =
|
||||
Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
|
||||
}
|
||||
}
|
||||
|
||||
@ -2846,11 +2676,11 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
|
||||
|
||||
VectorParts RdxParts;
|
||||
setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
|
||||
setDebugLocFromInst(Builder, LoopExitInst);
|
||||
for (unsigned part = 0; part < UF; ++part) {
|
||||
// This PHINode contains the vectorized reduction variable, or
|
||||
// the initial value vector, if we bypass the vector loop.
|
||||
VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
|
||||
VectorParts &RdxExitVal = getVectorValue(LoopExitInst);
|
||||
PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
|
||||
Value *StartVal = (part == 0) ? VectorStart : Identity;
|
||||
for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
|
||||
@ -2862,7 +2692,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
|
||||
// Reduce all of the unrolled parts into a single vector.
|
||||
Value *ReducedPartRdx = RdxParts[0];
|
||||
unsigned Op = getReductionBinOp(RdxDesc.Kind);
|
||||
unsigned Op = ReductionDescriptor::getReductionBinOp(RK);
|
||||
setDebugLocFromInst(Builder, ReducedPartRdx);
|
||||
for (unsigned part = 1; part < UF; ++part) {
|
||||
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
|
||||
@ -2871,8 +2701,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
|
||||
ReducedPartRdx, "bin.rdx"));
|
||||
else
|
||||
ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
|
||||
ReducedPartRdx, RdxParts[part]);
|
||||
ReducedPartRdx = ReductionDescriptor::createMinMaxOp(
|
||||
Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
|
||||
}
|
||||
|
||||
if (VF > 1) {
|
||||
@ -2903,7 +2733,8 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
TmpVec = addFastMathFlag(Builder.CreateBinOp(
|
||||
(Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
|
||||
else
|
||||
TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
|
||||
TmpVec = ReductionDescriptor::createMinMaxOp(Builder, MinMaxKind,
|
||||
TmpVec, Shuf);
|
||||
}
|
||||
|
||||
// The result is in the first element of the vector.
|
||||
@ -2915,7 +2746,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
// block and the middle block.
|
||||
PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
|
||||
LoopScalarPreHeader->getTerminator());
|
||||
BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
|
||||
BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]);
|
||||
BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
|
||||
|
||||
// Now, we need to fix the users of the reduction variable
|
||||
@ -2933,7 +2764,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
|
||||
// We found our reduction value exit-PHI. Update it with the
|
||||
// incoming bypass edge.
|
||||
if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
|
||||
if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) {
|
||||
// Add an edge coming from the bypass.
|
||||
LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
|
||||
break;
|
||||
@ -2948,7 +2779,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
|
||||
// Pick the other block.
|
||||
int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
|
||||
(RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
|
||||
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
|
||||
(RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
|
||||
}// end of for each redux variable.
|
||||
|
||||
fixLCSSAPHIs();
|
||||
@ -3712,41 +3543,9 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (AddReductionVar(Phi, RK_IntegerAdd)) {
|
||||
DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerMult)) {
|
||||
DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerOr)) {
|
||||
DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerAnd)) {
|
||||
DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerXor)) {
|
||||
DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_IntegerMinMax)) {
|
||||
DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatMult)) {
|
||||
DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatAdd)) {
|
||||
DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
|
||||
continue;
|
||||
}
|
||||
if (AddReductionVar(Phi, RK_FloatMinMax)) {
|
||||
DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
|
||||
"\n");
|
||||
if (ReductionDescriptor::isReductionPHI(Phi, TheLoop,
|
||||
Reductions[Phi])) {
|
||||
AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
|
||||
continue;
|
||||
}
|
||||
|
||||
@ -4029,294 +3828,6 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool hasMultipleUsesOf(Instruction *I,
|
||||
SmallPtrSetImpl<Instruction *> &Insts) {
|
||||
unsigned NumUses = 0;
|
||||
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
|
||||
if (Insts.count(dyn_cast<Instruction>(*Use)))
|
||||
++NumUses;
|
||||
if (NumUses > 1)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) {
|
||||
for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
|
||||
if (!Set.count(dyn_cast<Instruction>(*Use)))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
|
||||
ReductionKind Kind) {
|
||||
if (Phi->getNumIncomingValues() != 2)
|
||||
return false;
|
||||
|
||||
// Reduction variables are only found in the loop header block.
|
||||
if (Phi->getParent() != TheLoop->getHeader())
|
||||
return false;
|
||||
|
||||
// Obtain the reduction start value from the value that comes from the loop
|
||||
// preheader.
|
||||
Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
|
||||
|
||||
// ExitInstruction is the single value which is used outside the loop.
|
||||
// We only allow for a single reduction value to be used outside the loop.
|
||||
// This includes users of the reduction, variables (which form a cycle
|
||||
// which ends in the phi node).
|
||||
Instruction *ExitInstruction = nullptr;
|
||||
// Indicates that we found a reduction operation in our scan.
|
||||
bool FoundReduxOp = false;
|
||||
|
||||
// We start with the PHI node and scan for all of the users of this
|
||||
// instruction. All users must be instructions that can be used as reduction
|
||||
// variables (such as ADD). We must have a single out-of-block user. The cycle
|
||||
// must include the original PHI.
|
||||
bool FoundStartPHI = false;
|
||||
|
||||
// To recognize min/max patterns formed by a icmp select sequence, we store
|
||||
// the number of instruction we saw from the recognized min/max pattern,
|
||||
// to make sure we only see exactly the two instructions.
|
||||
unsigned NumCmpSelectPatternInst = 0;
|
||||
ReductionInstDesc ReduxDesc(false, nullptr);
|
||||
|
||||
SmallPtrSet<Instruction *, 8> VisitedInsts;
|
||||
SmallVector<Instruction *, 8> Worklist;
|
||||
Worklist.push_back(Phi);
|
||||
VisitedInsts.insert(Phi);
|
||||
|
||||
// A value in the reduction can be used:
|
||||
// - By the reduction:
|
||||
// - Reduction operation:
|
||||
// - One use of reduction value (safe).
|
||||
// - Multiple use of reduction value (not safe).
|
||||
// - PHI:
|
||||
// - All uses of the PHI must be the reduction (safe).
|
||||
// - Otherwise, not safe.
|
||||
// - By one instruction outside of the loop (safe).
|
||||
// - By further instructions outside of the loop (not safe).
|
||||
// - By an instruction that is not part of the reduction (not safe).
|
||||
// This is either:
|
||||
// * An instruction type other than PHI or the reduction operation.
|
||||
// * A PHI in the header other than the initial PHI.
|
||||
while (!Worklist.empty()) {
|
||||
Instruction *Cur = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
// No Users.
|
||||
// If the instruction has no users then this is a broken chain and can't be
|
||||
// a reduction variable.
|
||||
if (Cur->use_empty())
|
||||
return false;
|
||||
|
||||
bool IsAPhi = isa<PHINode>(Cur);
|
||||
|
||||
// A header PHI use other than the original PHI.
|
||||
if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
|
||||
return false;
|
||||
|
||||
// Reductions of instructions such as Div, and Sub is only possible if the
|
||||
// LHS is the reduction variable.
|
||||
if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
|
||||
!isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
|
||||
!VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
|
||||
return false;
|
||||
|
||||
// Any reduction instruction must be of one of the allowed kinds.
|
||||
ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
|
||||
if (!ReduxDesc.IsReduction)
|
||||
return false;
|
||||
|
||||
// A reduction operation must only have one use of the reduction value.
|
||||
if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
|
||||
hasMultipleUsesOf(Cur, VisitedInsts))
|
||||
return false;
|
||||
|
||||
// All inputs to a PHI node must be a reduction value.
|
||||
if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
|
||||
return false;
|
||||
|
||||
if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
|
||||
isa<SelectInst>(Cur)))
|
||||
++NumCmpSelectPatternInst;
|
||||
if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
|
||||
isa<SelectInst>(Cur)))
|
||||
++NumCmpSelectPatternInst;
|
||||
|
||||
// Check whether we found a reduction operator.
|
||||
FoundReduxOp |= !IsAPhi;
|
||||
|
||||
// Process users of current instruction. Push non-PHI nodes after PHI nodes
|
||||
// onto the stack. This way we are going to have seen all inputs to PHI
|
||||
// nodes once we get to them.
|
||||
SmallVector<Instruction *, 8> NonPHIs;
|
||||
SmallVector<Instruction *, 8> PHIs;
|
||||
for (User *U : Cur->users()) {
|
||||
Instruction *UI = cast<Instruction>(U);
|
||||
|
||||
// Check if we found the exit user.
|
||||
BasicBlock *Parent = UI->getParent();
|
||||
if (!TheLoop->contains(Parent)) {
|
||||
// Exit if you find multiple outside users or if the header phi node is
|
||||
// being used. In this case the user uses the value of the previous
|
||||
// iteration, in which case we would loose "VF-1" iterations of the
|
||||
// reduction operation if we vectorize.
|
||||
if (ExitInstruction != nullptr || Cur == Phi)
|
||||
return false;
|
||||
|
||||
// The instruction used by an outside user must be the last instruction
|
||||
// before we feed back to the reduction phi. Otherwise, we loose VF-1
|
||||
// operations on the value.
|
||||
if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
|
||||
return false;
|
||||
|
||||
ExitInstruction = Cur;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Process instructions only once (termination). Each reduction cycle
|
||||
// value must only be used once, except by phi nodes and min/max
|
||||
// reductions which are represented as a cmp followed by a select.
|
||||
ReductionInstDesc IgnoredVal(false, nullptr);
|
||||
if (VisitedInsts.insert(UI).second) {
|
||||
if (isa<PHINode>(UI))
|
||||
PHIs.push_back(UI);
|
||||
else
|
||||
NonPHIs.push_back(UI);
|
||||
} else if (!isa<PHINode>(UI) &&
|
||||
((!isa<FCmpInst>(UI) &&
|
||||
!isa<ICmpInst>(UI) &&
|
||||
!isa<SelectInst>(UI)) ||
|
||||
!isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
|
||||
return false;
|
||||
|
||||
// Remember that we completed the cycle.
|
||||
if (UI == Phi)
|
||||
FoundStartPHI = true;
|
||||
}
|
||||
Worklist.append(PHIs.begin(), PHIs.end());
|
||||
Worklist.append(NonPHIs.begin(), NonPHIs.end());
|
||||
}
|
||||
|
||||
// This means we have seen one but not the other instruction of the
|
||||
// pattern or more than just a select and cmp.
|
||||
if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
|
||||
NumCmpSelectPatternInst != 2)
|
||||
return false;
|
||||
|
||||
if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
|
||||
return false;
|
||||
|
||||
// We found a reduction var if we have reached the original phi node and we
|
||||
// only have a single instruction with out-of-loop users.
|
||||
|
||||
// This instruction is allowed to have out-of-loop users.
|
||||
AllowedExit.insert(ExitInstruction);
|
||||
|
||||
// Save the description of this reduction variable.
|
||||
ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
|
||||
ReduxDesc.MinMaxKind);
|
||||
Reductions[Phi] = RD;
|
||||
// We've ended the cycle. This is a reduction variable if we have an
|
||||
// outside user and it has a binary op.
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
|
||||
/// pattern corresponding to a min(X, Y) or max(X, Y).
|
||||
LoopVectorizationLegality::ReductionInstDesc
|
||||
LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
|
||||
ReductionInstDesc &Prev) {
|
||||
|
||||
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
|
||||
"Expect a select instruction");
|
||||
Instruction *Cmp = nullptr;
|
||||
SelectInst *Select = nullptr;
|
||||
|
||||
// We must handle the select(cmp()) as a single instruction. Advance to the
|
||||
// select.
|
||||
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
|
||||
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
|
||||
return ReductionInstDesc(false, I);
|
||||
return ReductionInstDesc(Select, Prev.MinMaxKind);
|
||||
}
|
||||
|
||||
// Only handle single use cases for now.
|
||||
if (!(Select = dyn_cast<SelectInst>(I)))
|
||||
return ReductionInstDesc(false, I);
|
||||
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
|
||||
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
|
||||
return ReductionInstDesc(false, I);
|
||||
if (!Cmp->hasOneUse())
|
||||
return ReductionInstDesc(false, I);
|
||||
|
||||
Value *CmpLeft;
|
||||
Value *CmpRight;
|
||||
|
||||
// Look for a min/max pattern.
|
||||
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_UIntMin);
|
||||
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_UIntMax);
|
||||
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_SIntMax);
|
||||
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_SIntMin);
|
||||
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_FloatMin);
|
||||
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_FloatMax);
|
||||
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_FloatMin);
|
||||
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
|
||||
return ReductionInstDesc(Select, MRK_FloatMax);
|
||||
|
||||
return ReductionInstDesc(false, I);
|
||||
}
|
||||
|
||||
LoopVectorizationLegality::ReductionInstDesc
|
||||
LoopVectorizationLegality::isReductionInstr(Instruction *I,
|
||||
ReductionKind Kind,
|
||||
ReductionInstDesc &Prev) {
|
||||
bool FP = I->getType()->isFloatingPointTy();
|
||||
bool FastMath = FP && I->hasUnsafeAlgebra();
|
||||
switch (I->getOpcode()) {
|
||||
default:
|
||||
return ReductionInstDesc(false, I);
|
||||
case Instruction::PHI:
|
||||
if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
|
||||
Kind != RK_FloatMinMax))
|
||||
return ReductionInstDesc(false, I);
|
||||
return ReductionInstDesc(I, Prev.MinMaxKind);
|
||||
case Instruction::Sub:
|
||||
case Instruction::Add:
|
||||
return ReductionInstDesc(Kind == RK_IntegerAdd, I);
|
||||
case Instruction::Mul:
|
||||
return ReductionInstDesc(Kind == RK_IntegerMult, I);
|
||||
case Instruction::And:
|
||||
return ReductionInstDesc(Kind == RK_IntegerAnd, I);
|
||||
case Instruction::Or:
|
||||
return ReductionInstDesc(Kind == RK_IntegerOr, I);
|
||||
case Instruction::Xor:
|
||||
return ReductionInstDesc(Kind == RK_IntegerXor, I);
|
||||
case Instruction::FMul:
|
||||
return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
|
||||
case Instruction::FSub:
|
||||
case Instruction::FAdd:
|
||||
return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
|
||||
case Instruction::FCmp:
|
||||
case Instruction::ICmp:
|
||||
case Instruction::Select:
|
||||
if (Kind != RK_IntegerMinMax &&
|
||||
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
|
||||
return ReductionInstDesc(false, I);
|
||||
return isMinMaxSelectCmpPattern(I, Prev);
|
||||
}
|
||||
}
|
||||
|
||||
bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
|
||||
ConstantInt *&StepValue) {
|
||||
Type *PhiTy = Phi->getType();
|
||||
|
Loading…
x
Reference in New Issue
Block a user